
Neural networks for
classification and regression

Outline

▪ Hour 1
• Review, examples of ML in IGM

• Neural networks introduction

▪ Hour 2: Neural network training

2

Last week: k-NN in python

▪ Dataset: Biomechanic features of orthopaedic
patients, and the type of injury

▪ Goal: Classify the condition of patients based
on biomechanic features

▪ Dataset: Pinguin body features and their
specie type

▪ Goal: Classify the specie of a new observed
pinguin

Note: the only difference between two exercises are the datasets

Review problem

▪ Dataset: Biomechanic features of 200 orthopaedic patients, and the type of injury
• Pelvic tilt (degree), Spondylolisthesis SP (degree), label: normal (1), Hernia (2), Spondylosithesis (3) disk

▪ Goal: given a new patient measurement, classify the disk

▪ Approach 1: k-NN
After tuning the distance and k using cross-fold validation, you found 4-
NN with Manhattan distance to have an accuracy of 72% on your test set.
Write the pseudo-code to classify the disk condition of this new patient

▪ Approach 2: Naive Bayes
Let’s first simplify the problem

▪ pelvic tilt: low/high, SP: low/high
Write the pseudo-code to classify the disk condition for a
patient who has low pelvic tilt and low SP

N = 200 dataset
2

"eIR

- -
y: z(1 , 2 , 3)

t 2
tes

I SE IR

for i = 1, . . .,
N

M

test ia : = dist(X , x) = (xi, - x+es + ↑ /CIxtes : ["low" , "low"]) is proportional to

1xi
=
-
x
+x 2) ↑ (x

+et
= "low" (2)P(x+: "low" / <4(2)

↑

I 2

findI smallest d's : i
, , i a , is , in

indices

test i
I iz 13

I

I
Pl X

+- st
- "Could

sit . X = "low" 13 =c))
↑

Y - mode /y , y , y , yip I

1 <i st . yi = c)

Example application of ML used in Génie mécanique

5

Prof. Josie Hughes: Computational robot design and fabrication lab

6

Nose Dive

Mid glide

Recovery
Glide

Automated fabrication & optimization of paper planes
Optimization & Exploration

• Predict the flight behaviour
of a paper plane (and its
variance) given the design
parameters

• Optimally sample from the
design space to build up the
model to minimize physical
experimentation

• Optimize the design of light
weight MAV robotic systems.

7

Soft Tentacles
Simulation & Modelling for design optimization

varying frequency varying length/material

Thrust

• Predict the thrust generated by soft structures for different controllers and morphologies given a training data set
• Can be used to optimize the design of soft swimming robots

8

Robots ‘food scientists’
Optimizing coffee foam

Metric for coffee bubbles Objective: minimize bubbles, maximize height

100+ coffees later…

9Introduction Logistic regression Linear regression

KNN

Clustering

Neural networks

Convolutional neural
networks

Naive Bayes

Decision-trees Dimensionality reduction

Reinforcement learning AI ethics

Neural networks
▪ Why deep learning?
▪ Neural networks

• Architecture
• Activation functions
▪ Training

• Back propogation
• Stochastic gradient descent

Review of supervised learning
feature vectors, independent variables

Labels, dependent variables, target, outcome

Training data/set/example

Sample, sample point

classiksalen
<

i - IRP
regression

i i i N

Y < x - y(i = 1

N

(xi , y hi
= 1

x

test
->DD- y test

&
f is determined based on our ML approach :

↑ linear/lagisha regression f parametized by &①
Naive Bayes · KNN

Why deep learning?
Logistic regression review

Logistic regression for -dimensional data:
Input:
Weights:
Bias:

Logistic:

d

σ(z) = 1
1 + e−z

x1

x2

xd

…

w1

w2

wd

σwT x + b ̂y

Input Weight Activation
function Output

xEIRd

we IR- wi + b =

= z

b E IR

X2

- & wix + b
D

S& 68

* I & &
&

X
,

- label A if wix + b > 0

& label o otherwisee.

Why deep learning?
Limitations of logistic regression

Issue: Logistic regression performs badly on non-
linearly separable data

Potential fix: Use feature engineering to make data
linearly separable, then use logistic regression

However:
▪ Features that linearly separate the data can be

hard to find manually, specially in high dimension

Why deep learning?
From logistic regression to neural networks

Neural networks have been successful in learning complex, non-linear functions

Why deep learning?
New way to approach ML

Data Features Model

Before deep learning:

Data Features Model

Deep neural networks derive
useful features from the data!

Deep learning:

Hand-design the features

Neural networks

Neural networks
Representation

“Fully-connected” layers
Each neuron of a layer is connected
to all neurons of the following layer

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

weights weights

Neural networks
Inside a neuron

 = Activation functiong

Connections to biological neurons

Source: towardsdatascience.com

Applications - nowadays everywhere!

- ChatGPT / large language models

- midjourney .

- object recogniton (ex : classify obstacle/new- obstacle , dog , cat , ...)

- digit/hand-wring recognition
:

Engineering
control : dynamical system modelly

controller designn.

Neural networks
Representation

a[l]
i Node in layer

Layer x =
x1
x2
x3

Shape (3, 1)

Neural networks
Representation

Weight vector for first node of first layer:

w[1]
1 =

w[1]
1,1

w[1]
1,2

w1]
1,3

x =
x1
x2
x3

w[1]
1

a[l]
i Node in layer

Layer

Neural networks
Representation

z[1]
1 = w[1]T

1 x + b[1]
1

z [1]
2 = w[1]T

2 x + b[1]
2

z [1]
3 = w[1]T

3 x + b[1]
3

z[1]
4 = w[1]T

4 x + b[1]
4

x =
x1
x2
x3

w[1]
1

a[l]
i Node in layer

Layer

Weight vector for first node of first layer:

w[1]
1 =

w[1]
1,1

w[1]
1,2

w1]
1,3

Neural networks
Representation

Shape (3, 1)

Weight vector for first node of first layer:

w[1]
1 =

w[1]
1,1

w[1]
1,2

w1]
1,3

a[1]
1 = g[1](z[1]

1)
a[1]

2 = g[1](z [1]
2)

a[1]
3 = g[1](z [1]

3)
a[1]

4 = g[1](z[1]
4)

x =
x1
x2
x3

w[1]
1

Apply activation

a[l]
i Node in layer

Layer

z[1]
1 = w[1]T

1 x + b[1]
1

z [1]
2 = w[1]T

2 x + b[1]
2

z [1]
3 = w[1]T

3 x + b[1]
3

z[1]
4 = w[1]T

4 x + b[1]
4

Neural networks
Representation

W[1] =
⋮ ⋮ ⋮ ⋮

w[1]
1 w[1]

2 w[1]
3 w[1]

4
⋮ ⋮ ⋮ ⋮

w[1]
1

a[1] = g[1](z[1])

b[1] =

b[1]
1

b[1]
2

b[1]
3

b[1]
4

z[1] = W[1]T x + b[1]

Shape (3, 4)

x =
x1
x2
x3

Apply activation

Vector notation:

a[l]
i Node in layer

Layer
3

EIR

bias
recen

-
weight recer d

&
EIR

I

layer 1 ,
9 modes

.

[1] & [1] 3x4
Z EIR , WE R

Activation functions

NN - Activation Function
Introduction

ŷ = g[2](W[2]Tg[1](W[1]T x + b[1]) + b[2])

Q: What happens if we remove the activations?

NN - Activation Function
Introduction

ŷ = g[2](W[2]Tg[1](W[1]T x + b[1]) + b[2])

Q: What happens if we remove the activations?

 ŷ = W[2]T(W[1]T x + b[1]) + b[2]

ŷ = W[2]TW[1]T x + W[2]Tb[1] + b[2]

Define W′
T = W[2]TW[1]T Define b′ = W[2]Tb[1] + b[2]

ŷ = W′

T x + b′

A: We end up with a linear classifier!

NN - Activation functions
Introduction

To model a nonlinear problem:
▪ Pass the output of each neuron through a nonlinear function,

called activation function
▪ Connection to neuron firing in brain

Some well-known activation functions:
▪ Sigmoid
▪ Tanh
▪ ReLU

NN - Activation functions
Overview

Sigmoid ():

▪ Squashes input in a [0, 1] range

▪ Approximately nullifies gradient (for “large” positive or
negative inputs) -> vanishing gradient problem

▪ rarely used except for final layer of binary classification
network

σ Tanh:
▪ Squashes input in a [-1, 1] range

▪ Like sigmoid, nullifies gradient (for “large” positive or
negative inputs)

▪ Zero-centered, preferable over sigmoid as an activation

▪ Rarely used in practice (ReLU is more popular)

1
x G

E (x) = I
threshold

I O

-
-

I
&

NN - Activation functions
Overview

Rectified Linear Unit (ReLU):
▪ Easily computed, simple gradient

▪ Greatly accelerates convergence of gradient descent

▪ Saturates in only one direction, suffers less from
vanishing gradient problem

▪ commonly used in practice

Leaky ReLU:
▪ Attempts to fix “dying ReLU” problem by having a

small negative slope for x < 0.

▪ Leaky ReLU and other ReLU variants (ELU,
SELU, GELU, Swish, etc…) are sometimes used
over ReLU

NN - Activation functions
Derivatives

Sigmoid:

Tanh:

σ(x) = 1
1 + e−x

d
dx

σ(x) = σ(x)(1 − σ(x))

tanh(x) = ex − e−x

ex + e−x

d
dx

tanh(x) = 1 − tanh2(x)

Rectified Linear Unit (ReLU):

Note: Derivative of ReLU is undefined for
. By convention, it is set to 0.

ReLU(x) = {x if x > 0
0 if x ≤ 0 = max(0, x)

d
dx

ReLU(x) = {1 if x > 0
0 if x < 0

x = 0

Training neural nets

Determining the neural network predictor

1) Choose the neural network architecture

2) Choose a loss function

3) Minimize the loss

Training [T]27 ? We (27W

- & -
X
, S D- S
-

↑ -

-number of layers
X
- S↓

-

-

->

-

&·
-

- I
M

- type of activator functor Y- S
I

D

O

- number of nodes in each layer ↑ -D
!

Di ⑭
J

N

regression - I (yi - yijz
Oth layer layer T Tage . z output

I ager
ni

classification : cross- entropy loss Y : predicte based

on NN
.

min & Chigig , Go I
[12] (k] loss

w /

b
k =,,T where T is the number of layers

Neural networks
Training

Forward pass of 2 layer NN (for a single example):

z[1] = W[1]T x + b[1]

a[1] = g[1](z[1])
z[2] = W[2]Ta[1] + b[2]

ŷ = a[2] = g[2](z[2])
ŷ = g[2](W[2]Tg[1](W[1]T x + b[1]) + b[2])

W[1] W[2]

depth 2 network...

you can see how to

generalize ↳ depth T

network

Neural networks
Training

Forward pass of 2 layer NN (for a single sample):

To train, we need a loss function:

Using that loss function, we want to update

using gradient descent.

ŷ = g[2](W[2]Tg[1](W[1]T x + b[1]) + b[2])

L(ŷ, y)

W[1], b[1], W[2], b[2]

W[1] W[2]

& x 2
3x9

[1]
weIR W(7 EIR

[2]
b) EIR" b EIR

Loss function
Regression

Classification

& (xi , yi)Y , ye

mean. square error (MSE)
N

L(W
, b) = ↓ [(yi-gije , ye productor of neural net

i = 1

-> output layer has often no con linearly .

N

4 exiji yi f (1 , 2, ..., k)

- output layer hasK neurons ,
followed by cross- entropy loss.

Gradient descent

Need to compute: ,

=> Gradient of loss with respect
to weights and biases of each layer

Once gradients are computed,
update weights with:

▪

▪

where is the learning rate

∂L
∂W[i]

∂L
∂b[i]

W[i]
t+1 := W[i]

t − αt
∂L

∂W[i] (Wt, bt)

b[i]
t+1 := b[i]

t − αt
∂L

∂b[i] (Wt, bt)

αt

Neural networks
Forward / Backward pass

Forward pass: Compute the output of a neural network for a given input
Backward pass: Compute derivatives of the network parameters given the output

During training, you need both the forward pass and the backward pass.

During prediction (inference), you only need the forward pass.

Inference: the process of using a trained machine learning model for prediction

Computing gradients
Back propagation

example i EIR" , y ER -
⑪

((yi· ji) : (yi- yig , (Recall ((Wib) :(ii) X-ob&

We need to compute
Y
2

->

- MS

2)W , b)
,

3 (b)
,

/W . b)
,

Olybi
& a

2 wj , l
- bj Ou, 06

. TimYdwhere (wirh
j , .., m , l = 1 , ..., d

are meiglets ⑭
layer

of
layer a , 1 bid are brases of laye. S

m under

& Wo
, is)

,, , , .
.

, m

are weights of the output layer -

in layer 1

bo <IR biar of output layer

Computing gradients
Back propagation

Now
,
we focus on & & y -y9 ,

where we drop i superscript for simplisy
& Wo , k

5 = g(b + w

-,

a
, + wa , 292

+... + Wo
,

mm) = g
.

(2) , %: IR-IR
D

I

a = g(b; + wj , X ,
+ Vjzxz

+
- + wi , (d) = g(zj) , j = 1 ..,

m -

= (y - y >2
~ z(y - y) (= 2(y - y) g.B = 2(y-y)

Jus, &Wa , k
d) zo &W

.,
K -

& a

/
2

2ii
= 2(y-y) = 213-7)

s

Gwj , l 8wj, l

= W
↑

d
8

01]
-0=

= VU .

xpdz ; O wil
D

S

-
V .

&

