

Neural networks for classification and regression

Outline

- Hour 1
 - Review, examples of ML in IGM

Neural networks introduction

Hour 2: Neural network training

EPFL Last week: k-NN in python

Note: the only difference between two exercises are the datasets

- Dataset: Biomechanic features of orthopaedic patients, and the type of injury
- Goal: Classify the condition of patients based on biomechanic features

Normal Disc Sciati Nervi	ic erve essed by ted Disc

	pelvic_tilt	degree_spondylolisthesis	class
0	22.552586	-0.254400	Hernia
1	10.060991	4.564259	Hernia
2	22.218482	-3.530317	Hernia
3	24.652878	11.211523	Hernia
4	9.652075	7.918501	Hernia
•••	•••	•••	•••
85	9.906072	20.315315	Spondylolisthesis
86	17.879323	22.123869	Spondylolisthesis
87	10.218996	37.364540	Spondylolisthesis
88	16.800200	24.018575	Spondylolisthesis
89	23.896201	27.283985	Spondylolisthesis

- Dataset: Pinguin body features and their specie type
- Goal: Classify the specie of a new observed pinguin

	species	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
0	Chinstrap	49.0	19.5	210.0	3950.0
1	Chinstrap	50.9	19.1	196.0	3550.0
2	Gentoo	42.7	13.7	208.0	3950.0
3	Chinstrap	43.5	18.1	202.0	3400.0
4	Chinstrap	49.8	17.3	198.0	3675.0

Review problem

- Dataset: Biomechanic features of 200 orthopaedic patients, and the type of injury
 - 4, ∈ {1,2,3} • Pelvic tilt (degree), Spondylolisthesis SP (degree), label: normal (1), Hernia (2), Spondylosithesis (3) disk
- Goal: given a new patient measurement, classify the disk / x ∈ R

Approach 1: k-NN

After tuning the distance and k using cross-fold validation, you found 4-NN with Manhattan distance to have an accuracy of 72% on your test set. Write the pseudo-code to classify the disk condition of this new patient

Approach 2: Naive Bayes

Let's first simplify the problem

pelvic tilt: low/high, SP: low/high

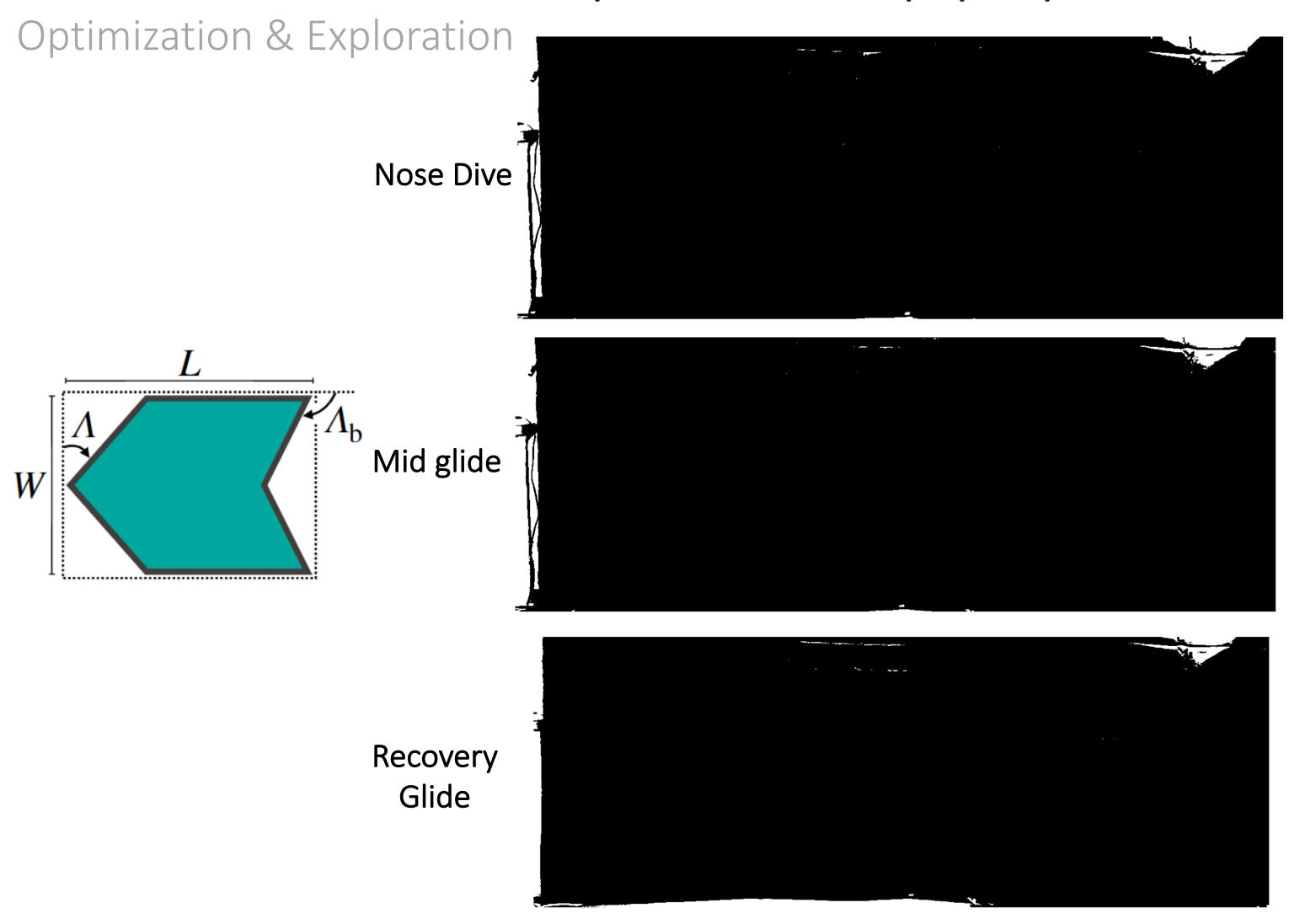
Write the pseudo-code to classify the disk condition for a patient who has **low** pelvic tilt and **low** SP

 $x' \in \mathbb{R}^2$

Example application of ML used in Génie mécanique

Prof. Josie Hughes: Computational robot design and fabrication lab

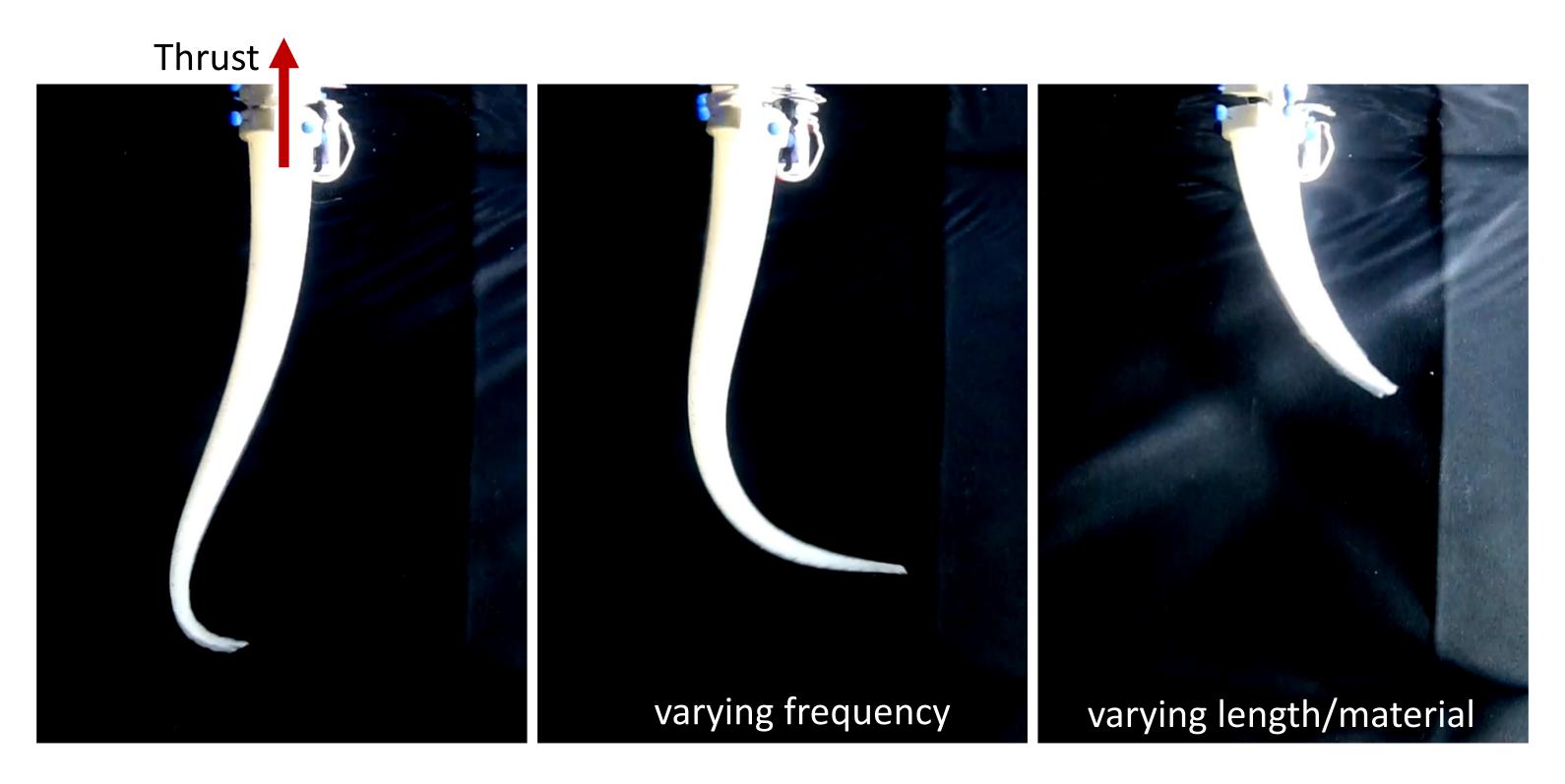
Automated fabrication & optimization of paper planes



- Predict the flight behaviour of a paper plane (and its variance) given the design parameters
- Optimally sample from the design space to build up the model to minimize physical experimentation
- Optimize the design of light weight MAV robotic systems.

Soft Tentacles

Simulation & Modelling for design optimization

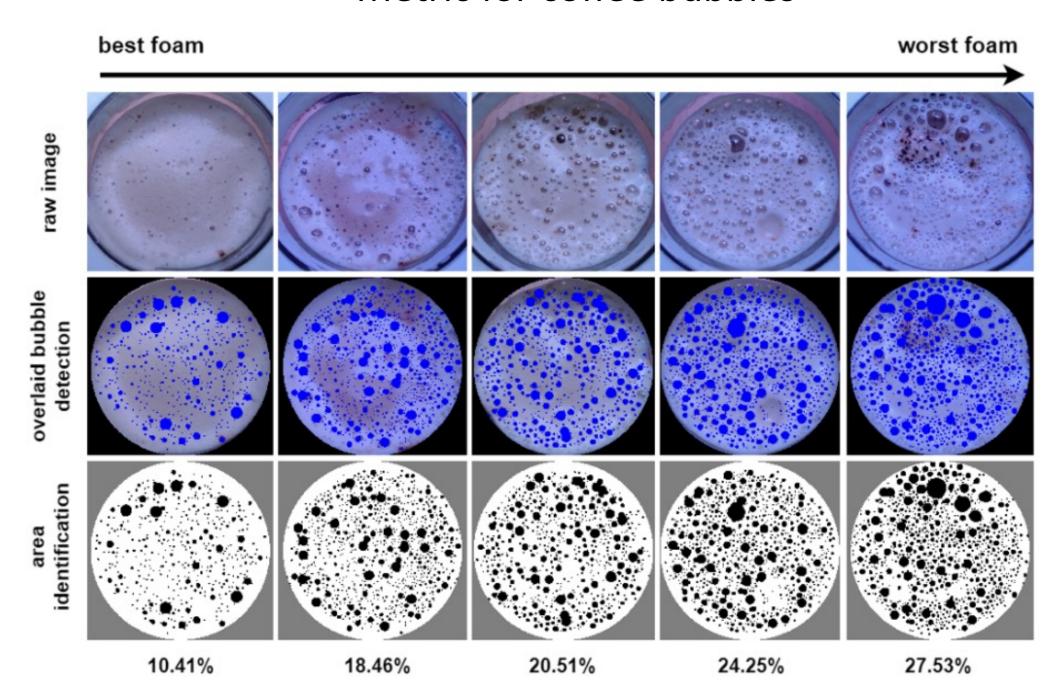


- Predict the thrust generated by soft structures for different controllers and morphologies given a training data set
- Can be used to optimize the design of soft swimming robots

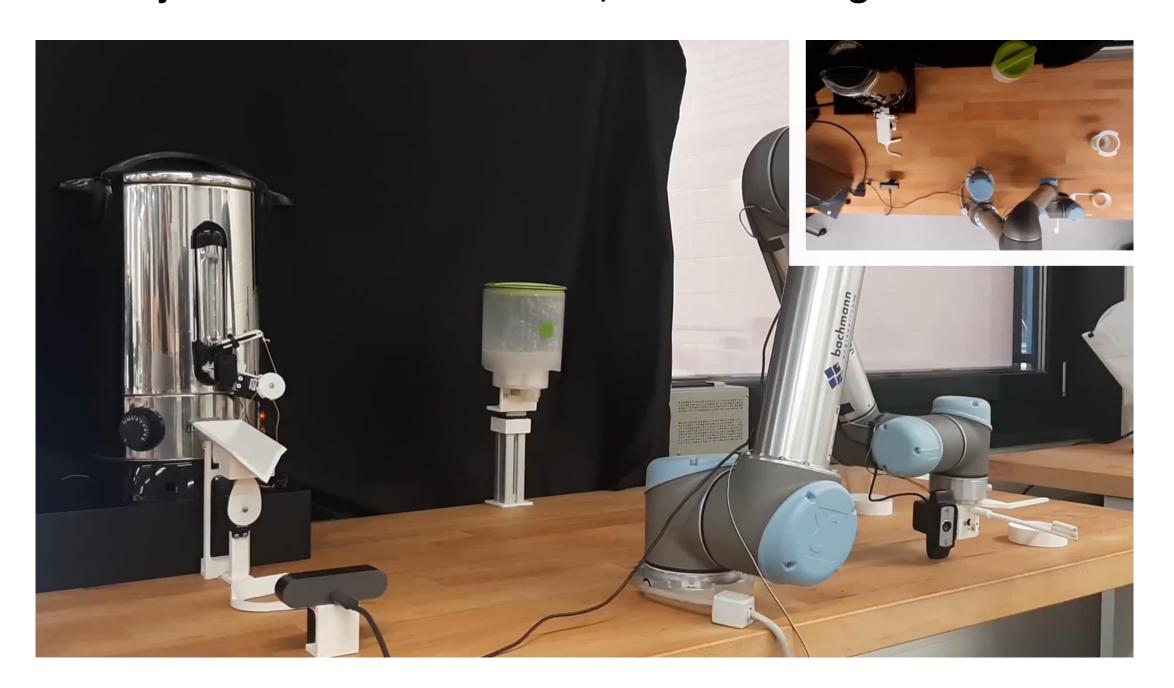
Robots 'food scientists'

Optimizing coffee foam

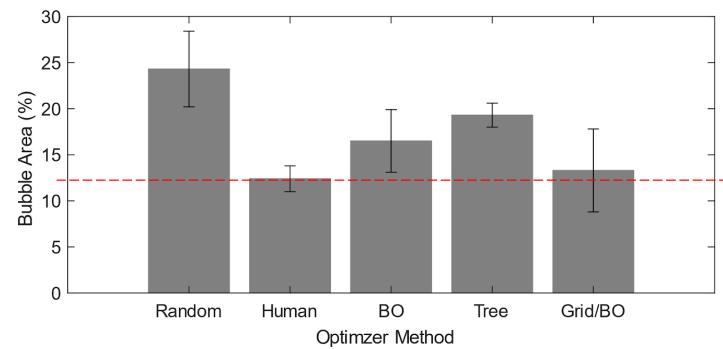
Metric for coffee bubbles

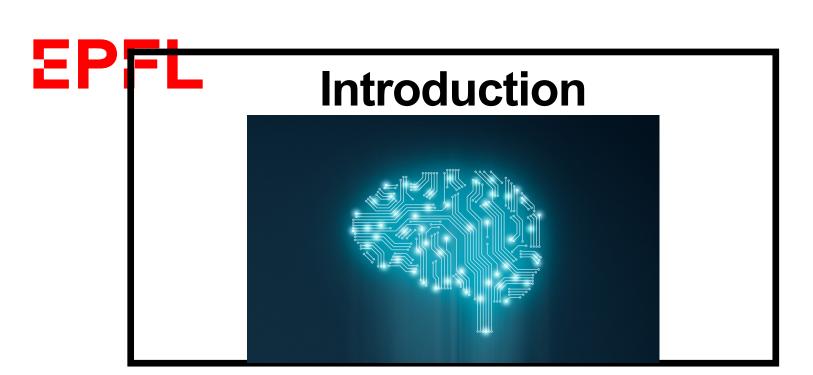


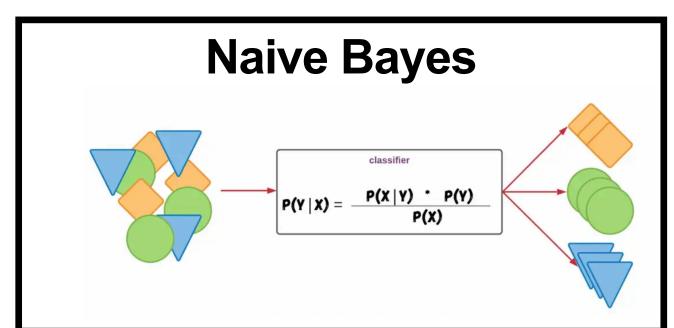
Objective: minimize bubbles, maximize height

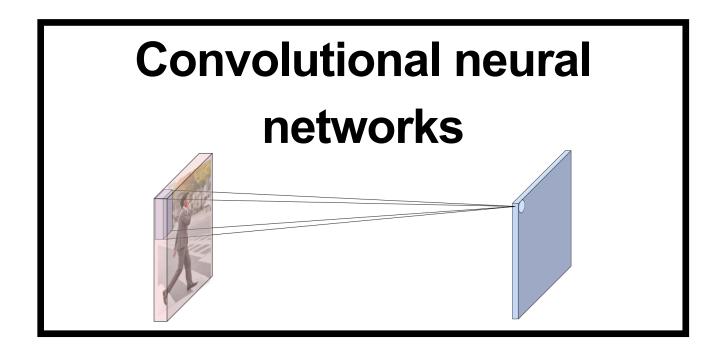


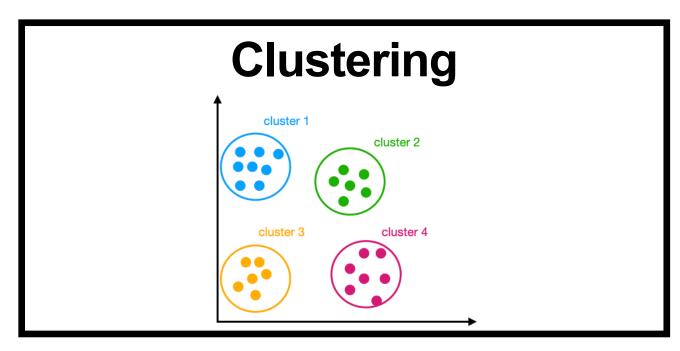
100+ coffees later...

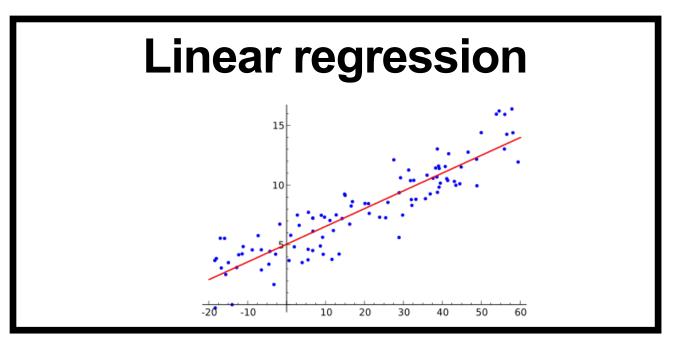


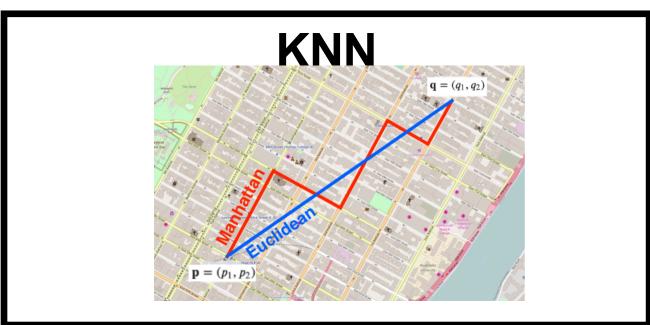


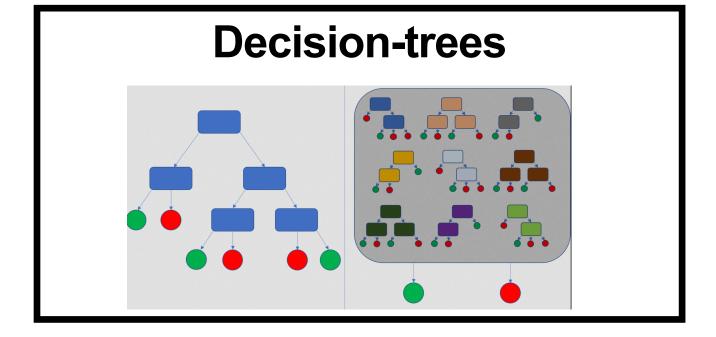


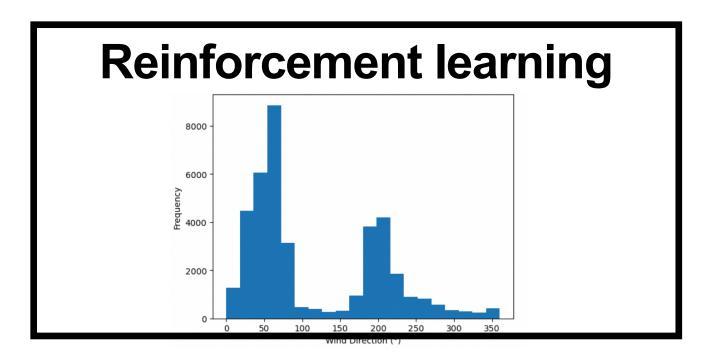


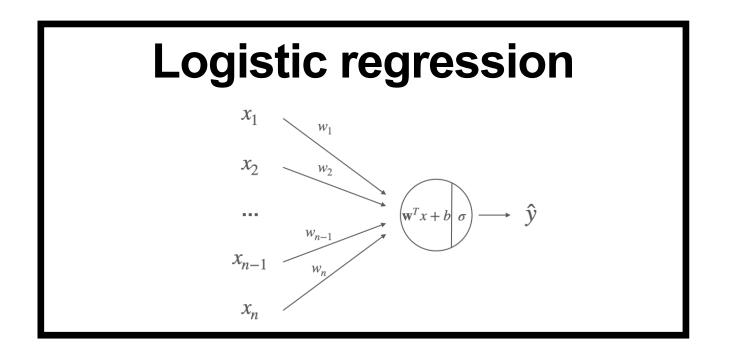


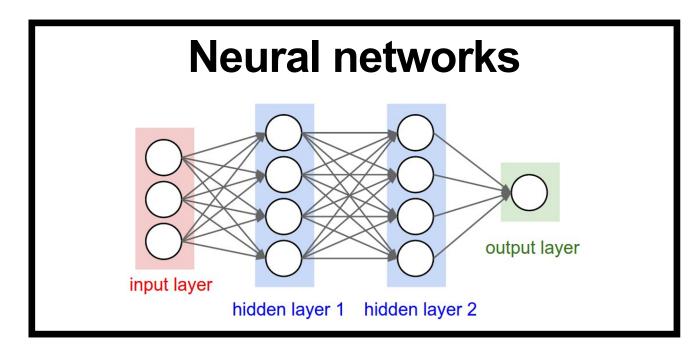


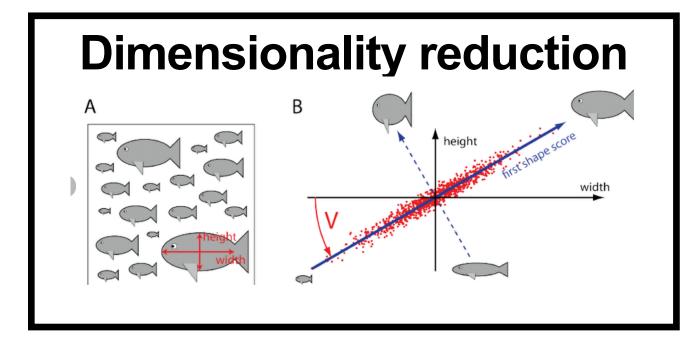














- Why deep learning?
- Neural networks
 - Architecture
 - Activation functions
- Training
 - Back propogation
 - Stochastic gradient descent

Review of supervised learning ('assiliation

 $3c \in \mathbb{R}^d$ feature vectors, independent variables

Labels, dependent variables, target, outcome

(x' ~ y' } ;= 1

Training data/set/example $\left\langle \times', \gamma' \right\rangle_{;=}$

Sample, sample point

is determined based on our ML approach: lineau lægishe regression fo pavamemzed by o

- Naive Bayes, KNN

Why deep learning?

Logistic regression review

Logistic regression for d-dimensional data:

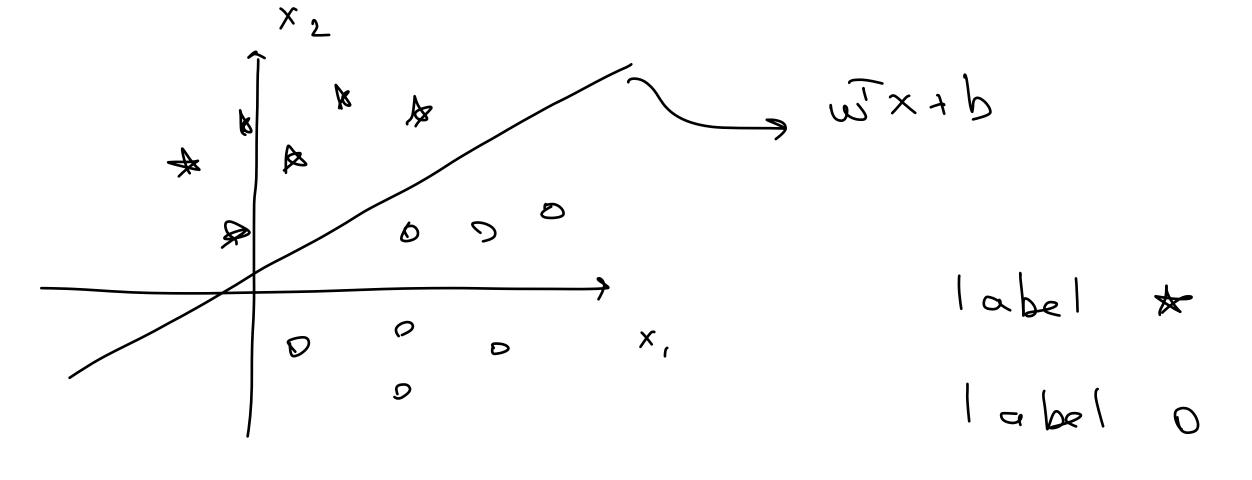
Logistic regression for
$$d$$
-dimensional data:

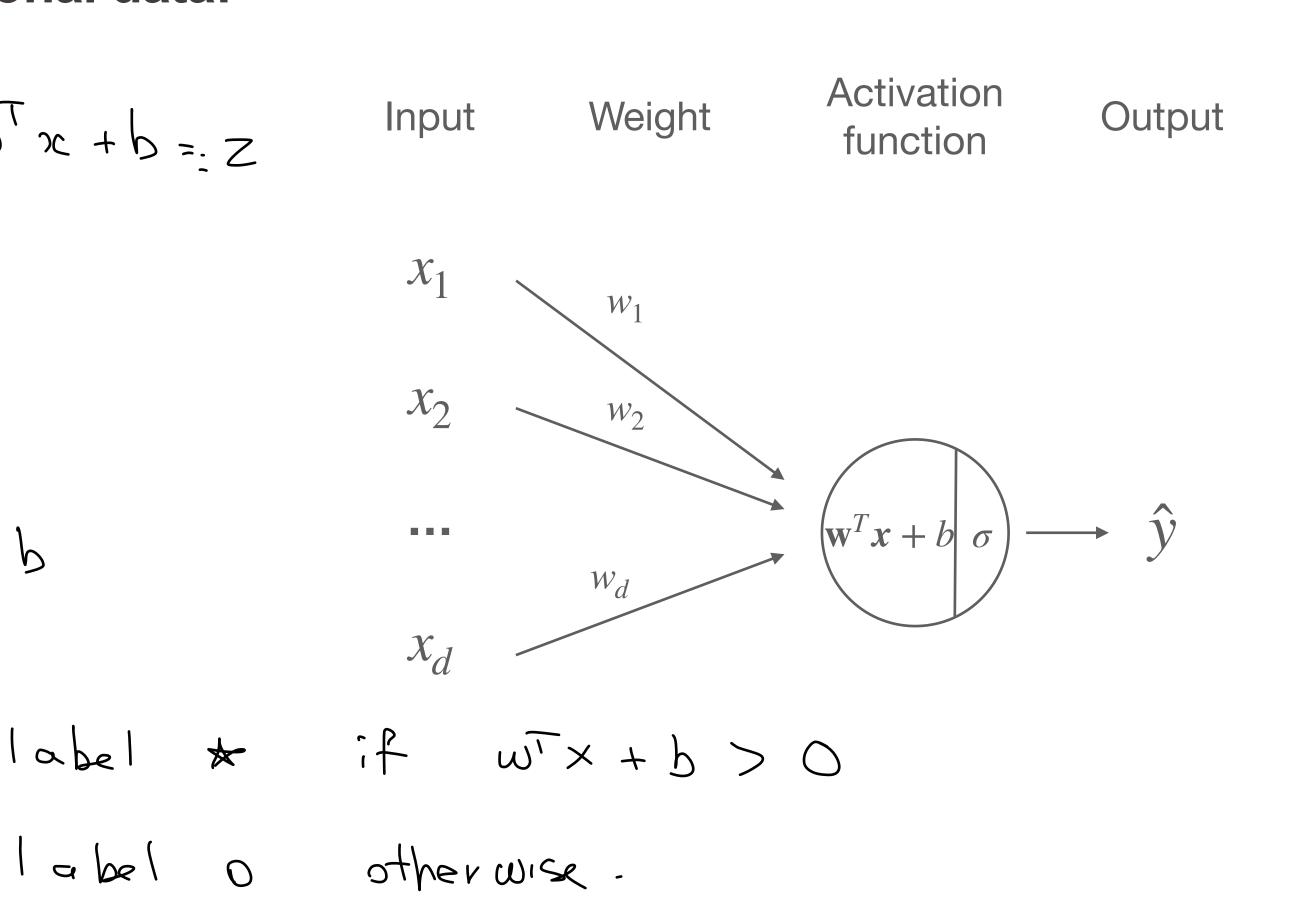
Input: $x \in \mathbb{R}^d$

Weights: $\omega \in \mathbb{R}^d$

Bias: $b \in \mathbb{R}$

Logistic:
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$





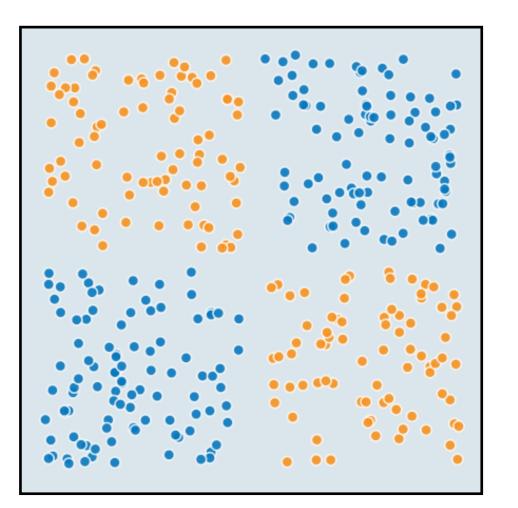
Why deep learning? Limitations of logistic regression

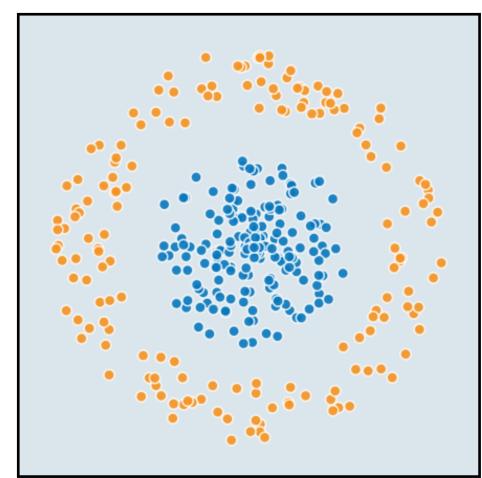
Issue: Logistic regression performs badly on non-linearly separable data

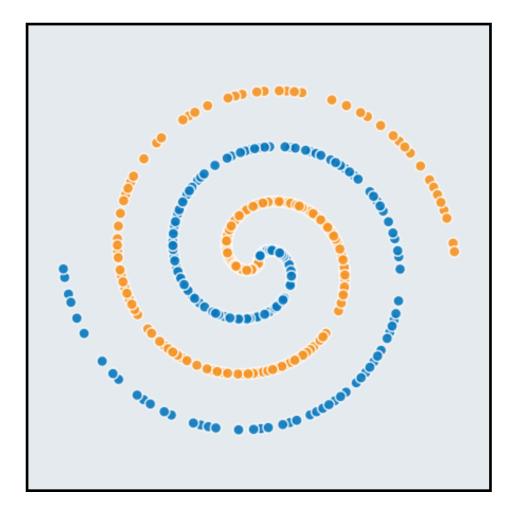
Potential fix: Use feature engineering to make data linearly separable, then use logistic regression

However:

 Features that linearly separate the data can be hard to find manually, specially in high dimension

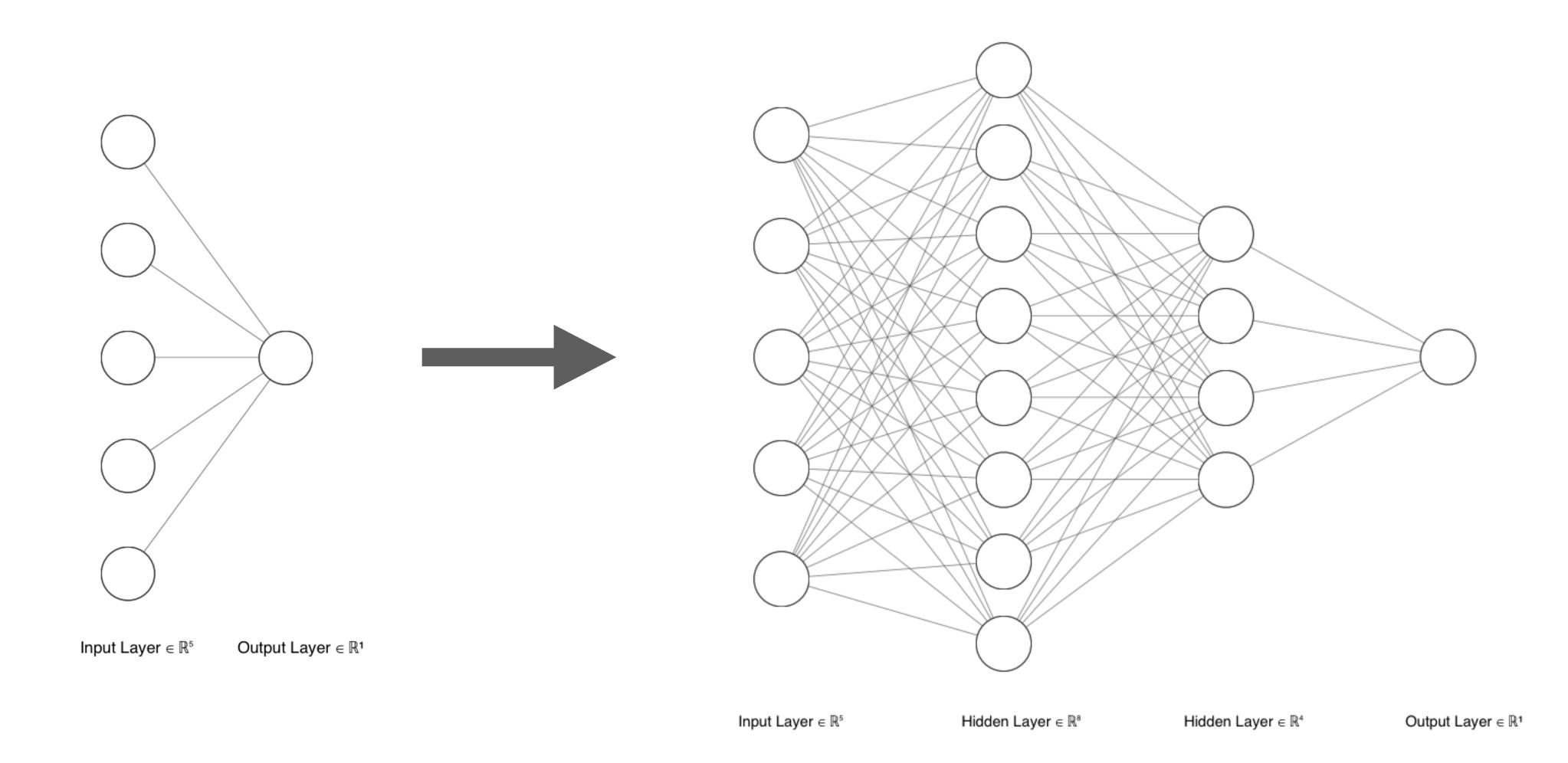






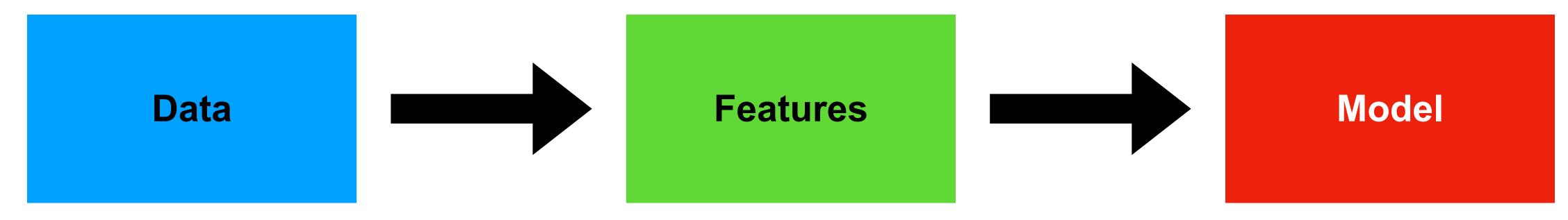
Why deep learning? From logistic regression to neural networks

Neural networks have been successful in learning complex, non-linear functions



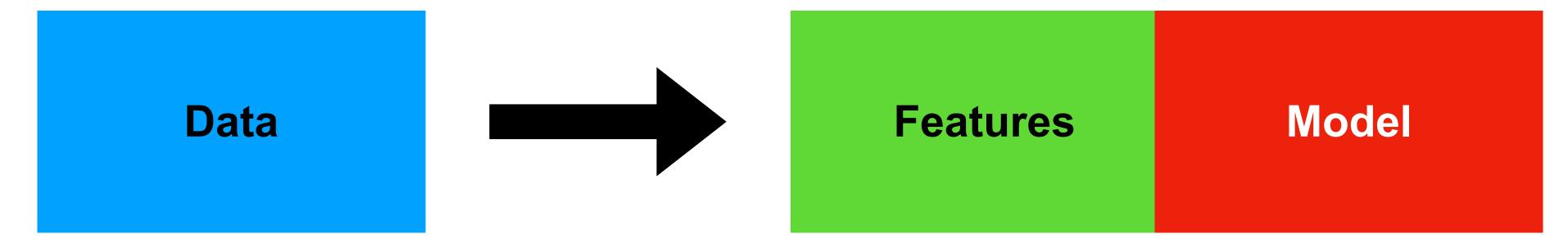
Why deep learning? New way to approach ML

Before deep learning:



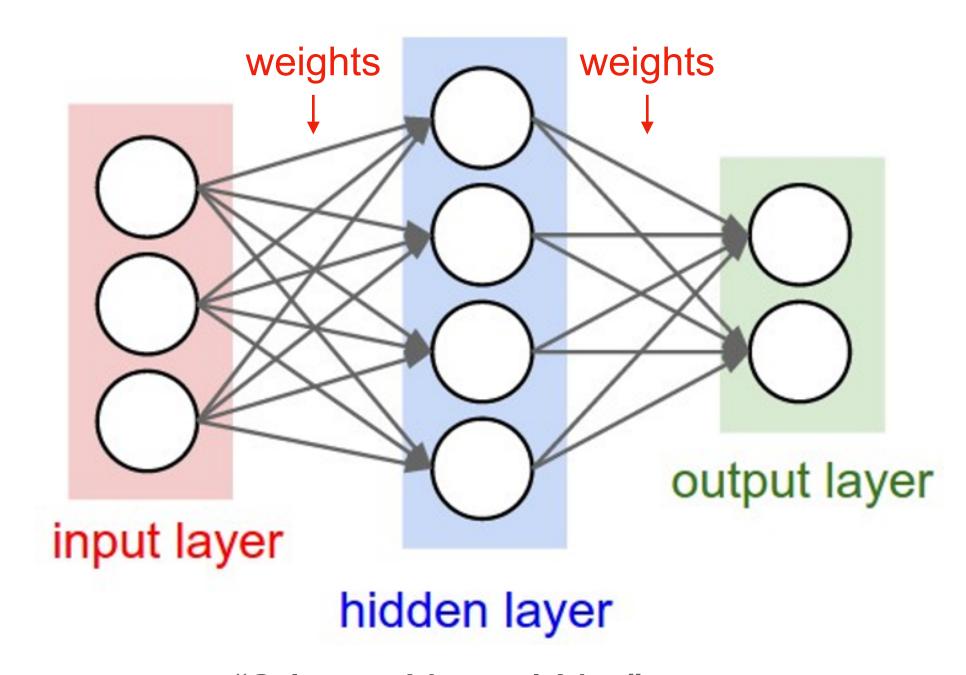
Hand-design the features

Deep learning:

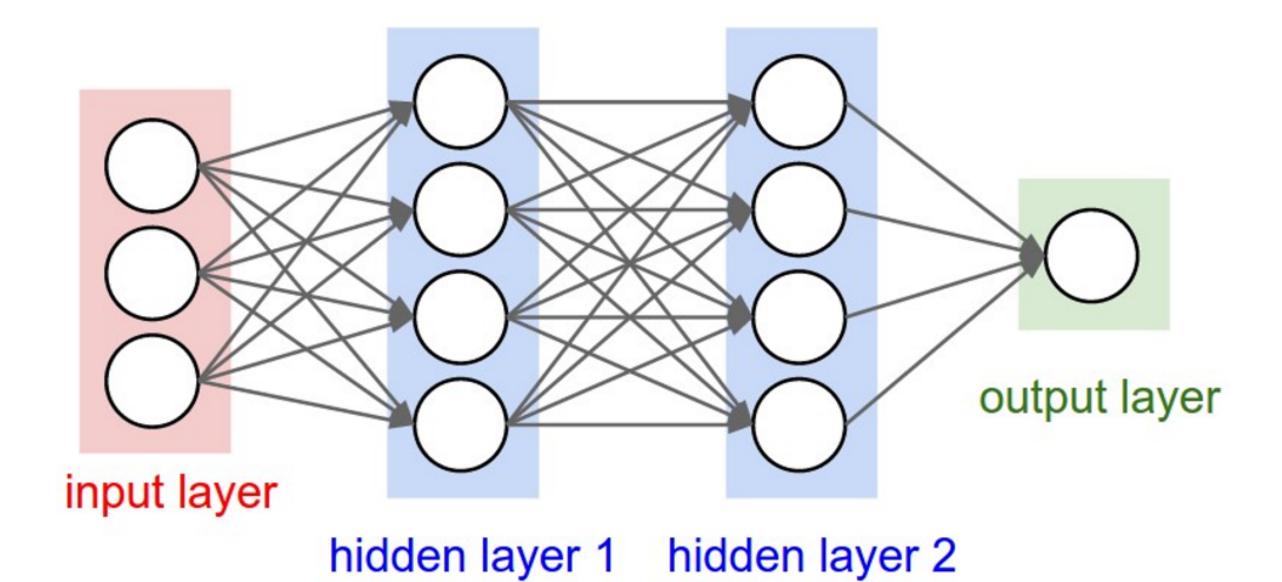


Deep neural networks derive useful features from the data!

Representation



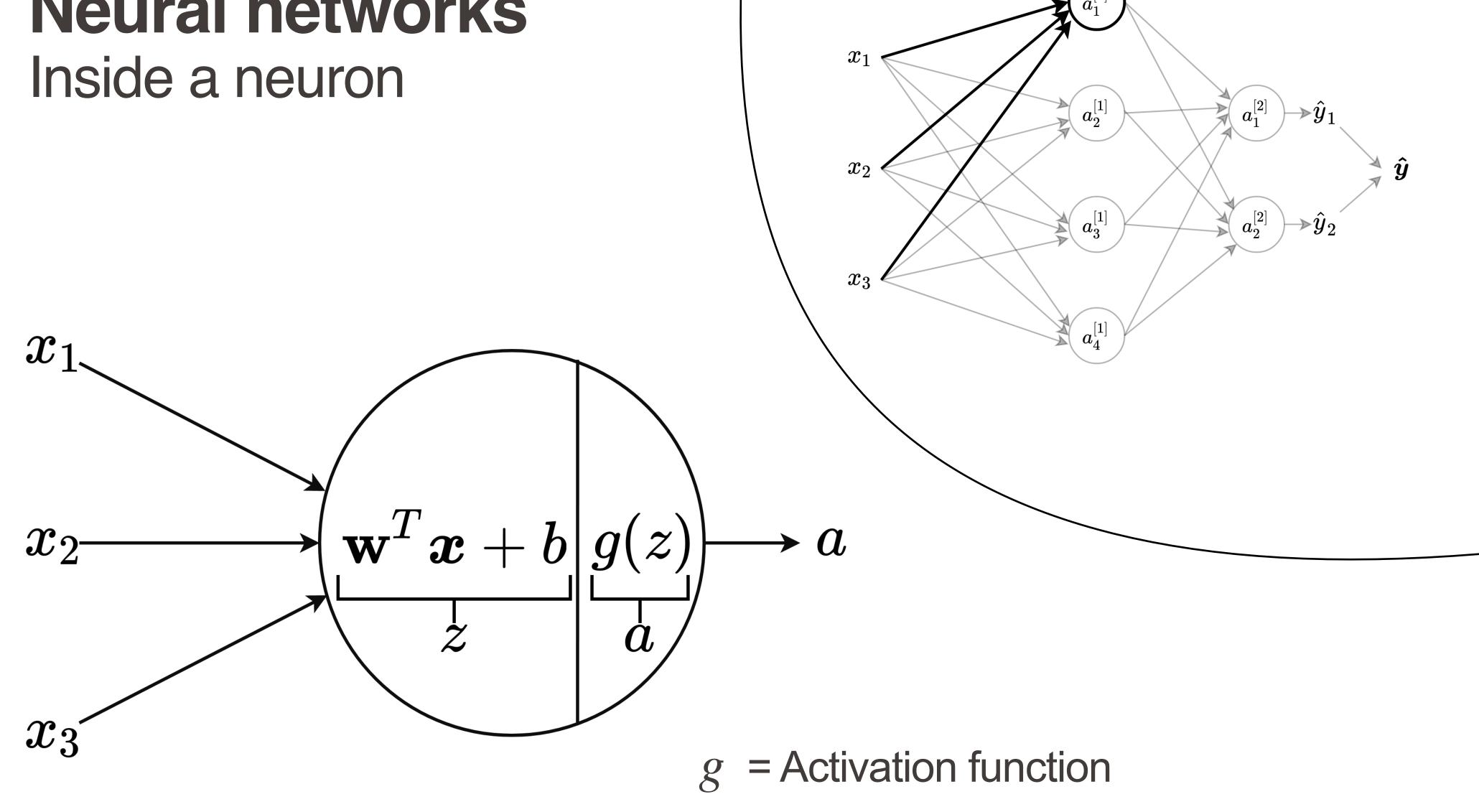
"2-layer Neural Net", or "1-hidden-layer Neural Net"



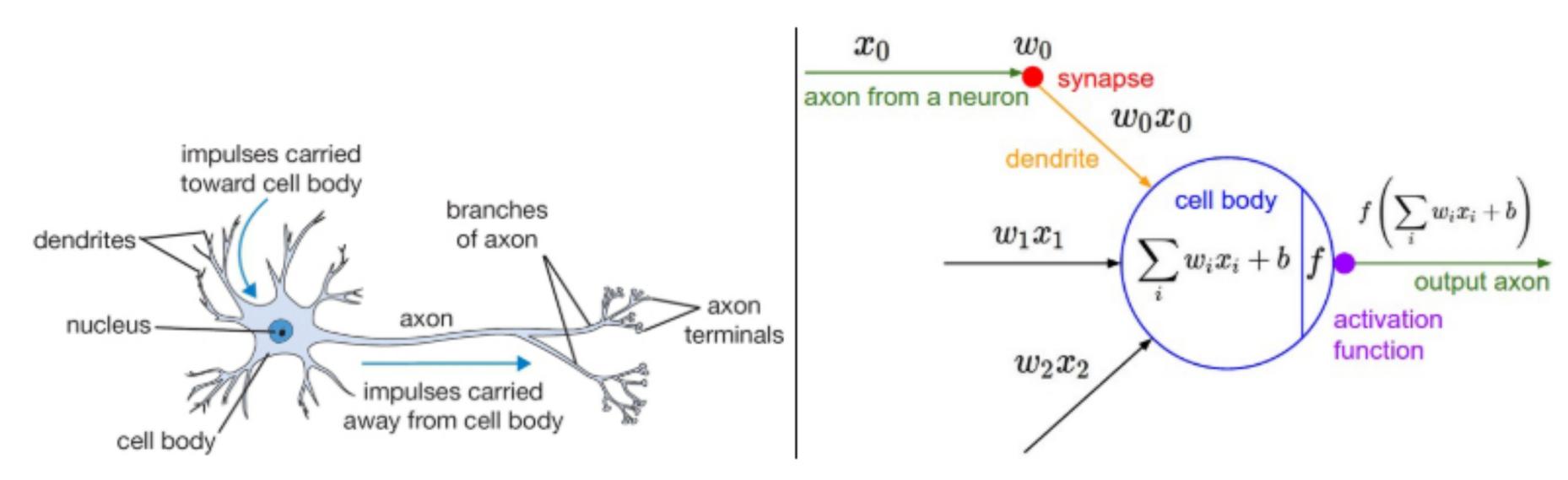
"3-layer Neural Net", or "2-hidden-layer Neural Net"

"Fully-connected" layers

Each neuron of a layer is connected to all neurons of the following layer



Connections to biological neurons



A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Source: towardsdatascience.com

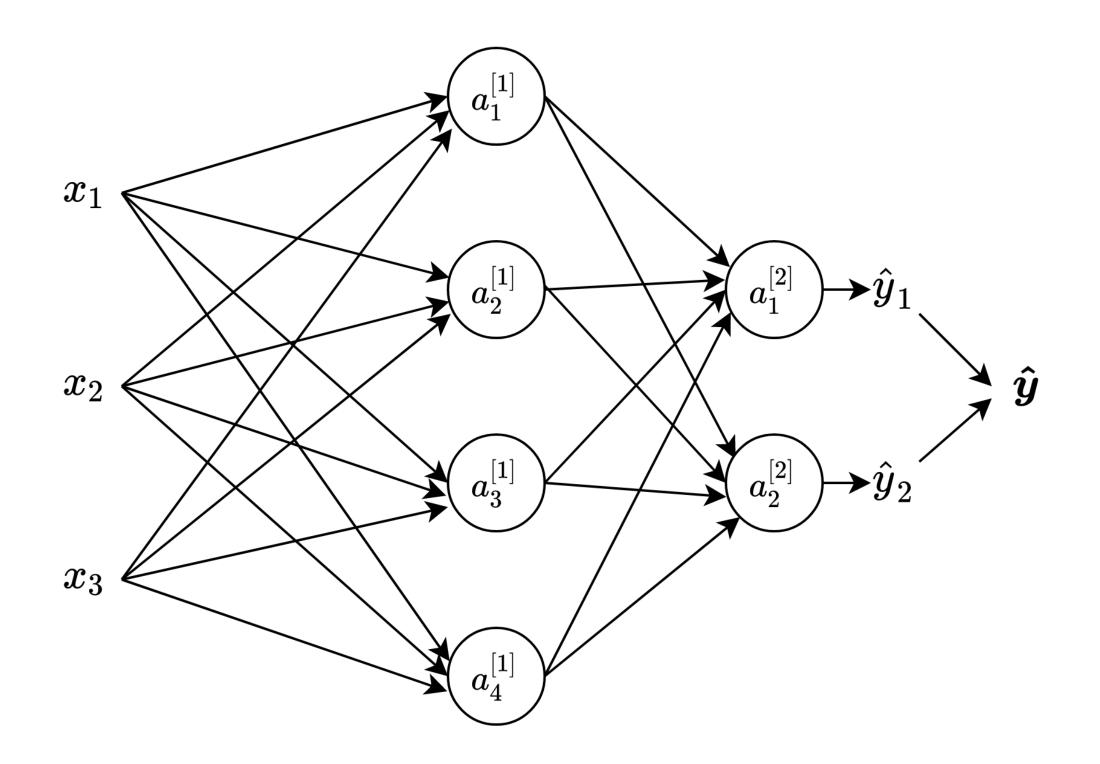
Applications - nowadays everywhere!

```
- chatGPT / large language model
- miel Journey..
- Object recognition (ex: classify obstacle/non-stolacle, dog, cot,...)
- digit/hand-writing recognition
 Engineers
```

control: el gnoemical system modello controller dangen.

Representation

$$a_i^{[l]}$$
 Layer $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ — Shape (3, 1)



Neural networks Representation

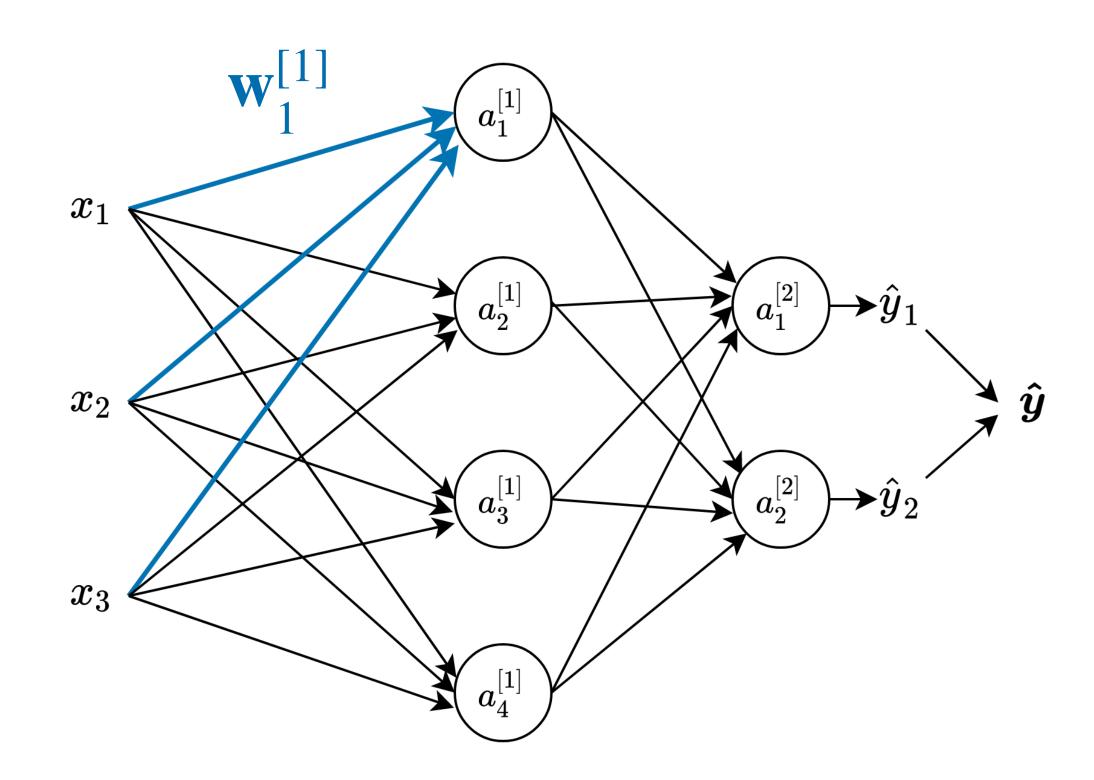
$$a_i^{[l]} \longleftarrow_{\text{Layer}} \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Weight vector for first node of first layer:

$$\mathbf{w}_{1,1}^{[1]} = w_{1,2}^{[1]}$$

$$w_{1,1}^{[1]} = w_{1,2}^{[1]}$$

$$w_{1,3}^{[1]}$$



Neural networks Representation

$$a_i^{[l]}$$
 Layer $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Weight vector for first node of first layer:

$$\mathbf{w}_{1,1}^{[1]}$$

$$\mathbf{w}_{1,1}^{[1]}$$

$$= w_{1,2}^{[1]}$$

$$w_{1,2}^{[1]}$$

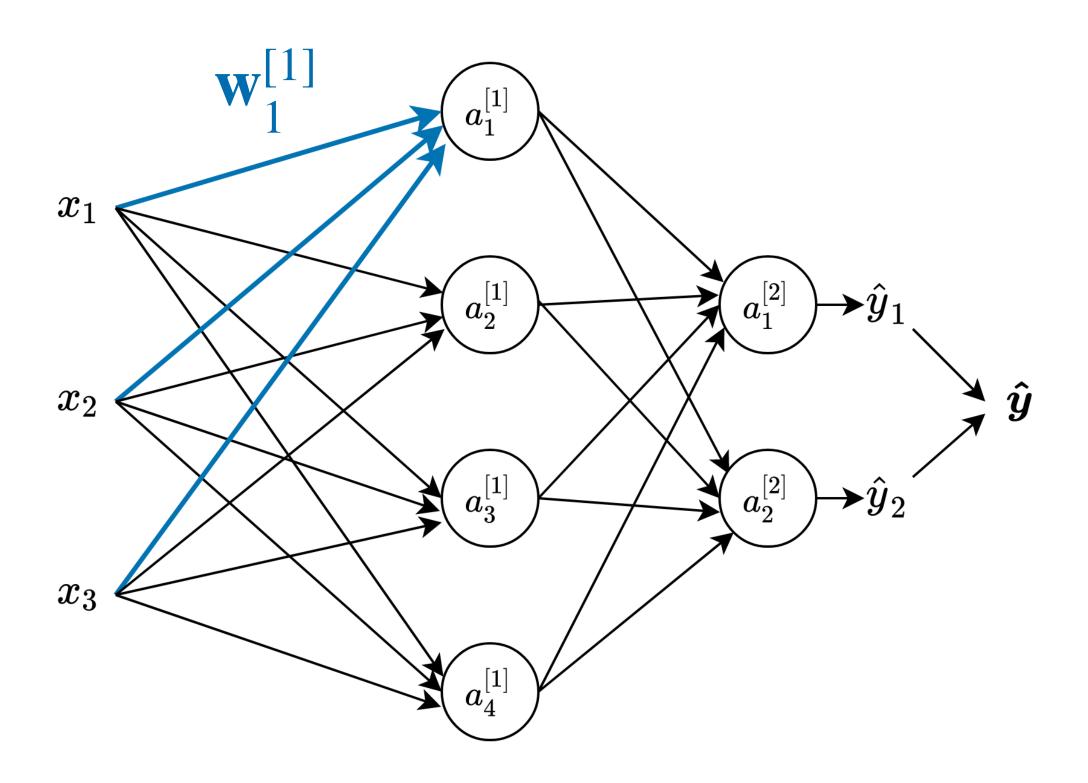
$$w_{1,3}^{1]}$$

$$z_{1}^{[1]} = \mathbf{w}_{1}^{[1]T} \mathbf{x} + b_{1}^{[1]}$$

$$z_{2}^{[1]} = \mathbf{w}_{2}^{[1]T} \mathbf{x} + b_{2}^{[1]}$$

$$z_{3}^{[1]} = \mathbf{w}_{3}^{[1]T} \mathbf{x} + b_{3}^{[1]}$$

$$z_{4}^{[1]} = \mathbf{w}_{4}^{[1]T} \mathbf{x} + b_{4}^{[1]}$$



Representation

$$a_i^{[l]}$$
 Layer $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

Weight vector for first node of first layer:

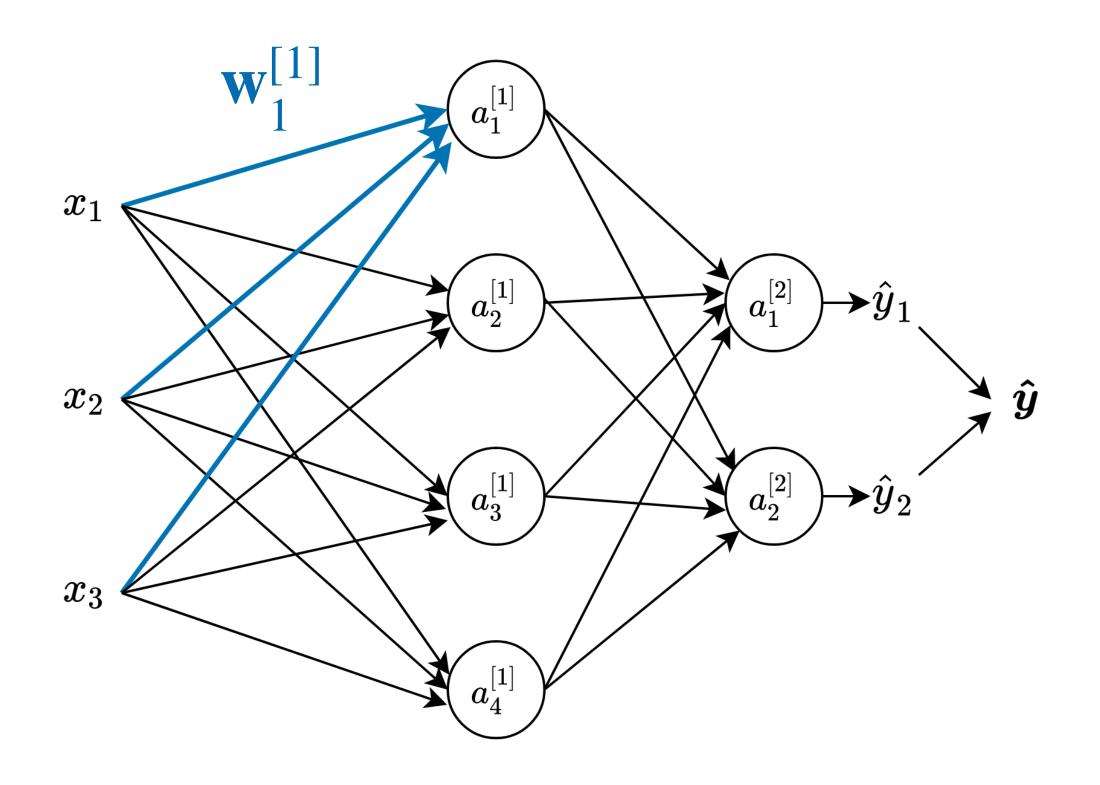
$$\mathbf{w}_{1}^{[1]} = \begin{bmatrix} w_{1,1}^{[1]} \\ w_{1,2}^{[1]} \\ w_{1,3}^{[1]} \end{bmatrix} \leftarrow \text{Shape (3, 1)}$$

$$z_{1}^{[1]} = \mathbf{w}_{1}^{[1]T} x + b_{1}^{[1]}$$

$$z_{2}^{[1]} = \mathbf{w}_{2}^{[1]T} x + b_{2}^{[1]}$$

$$z_{3}^{[1]} = \mathbf{w}_{3}^{[1]T} x + b_{3}^{[1]}$$

$$z_{4}^{[1]} = \mathbf{w}_{4}^{[1]T} x + b_{4}^{[1]}$$
Apply activation
$$z_{4}^{[1]} = \mathbf{w}_{4}^{[1]T} x + b_{4}^{[1]}$$



$$a_{1}^{[1]} = g^{[1]}(z_{1}^{[1]})$$

$$a_{2}^{[1]} = g^{[1]}(z_{2}^{[1]})$$

$$a_{3}^{[1]} = g^{[1]}(z_{3}^{[1]})$$

$$a_{4}^{[1]} = g^{[1]}(z_{4}^{[1]})$$

Representation

$$a_i^{[l]}$$
 Layer

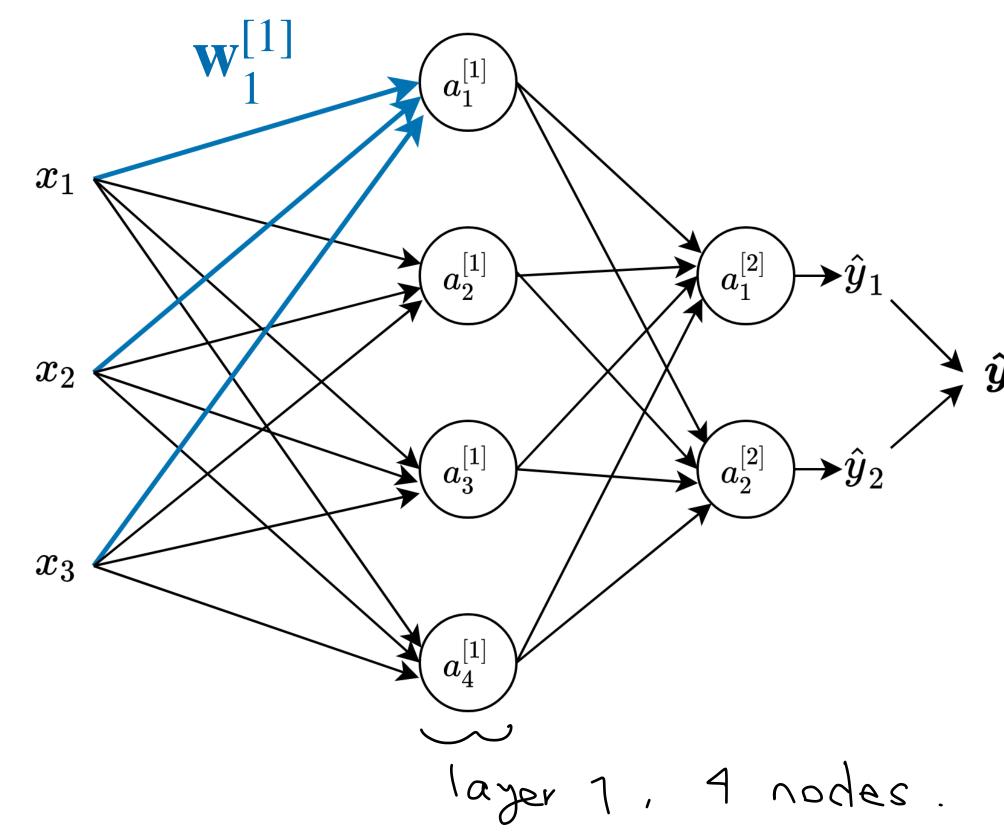
Node in layer

$$a_i^{[l]} \leftarrow Layer$$
 $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$

Shape (3, 4)

Vector notation:
$$\mathbf{w}^{[1]} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \mathbf{w}^{[1]}_1 & \mathbf{w}^{[1]}_2 & \mathbf{w}^{[1]}_3 & \mathbf{w}^{[1]}_4 \end{bmatrix} \quad \mathbf{b}^{[1]} = \begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ b_3^{[1]} \\ b_4^{[1]} \end{bmatrix} \in \mathbb{R}^4 \quad x_3$$

$$b_{1}a_{5} = \begin{bmatrix} b_{1}^{[1]} \\ b_{2}^{[1]} \\ b_{3}^{[1]} \\ b_{1}^{[1]} \end{bmatrix} \in \mathbb{R}^{4}$$



$$\mathbf{z}^{[1]} = \mathbf{W}^{[1]T} \mathbf{x} + \mathbf{b}^{[1]} \qquad \underline{\text{Apply activation}} \qquad \mathbf{a}^{[1]} = g^{[1]} (\mathbf{z}^{[1]})$$

$$\mathbf{z}^{[1]} \in \mathbb{R}^{4} , \qquad \mathbf{w}^{[1]} \in \mathbb{R}^{3 \times 4}$$

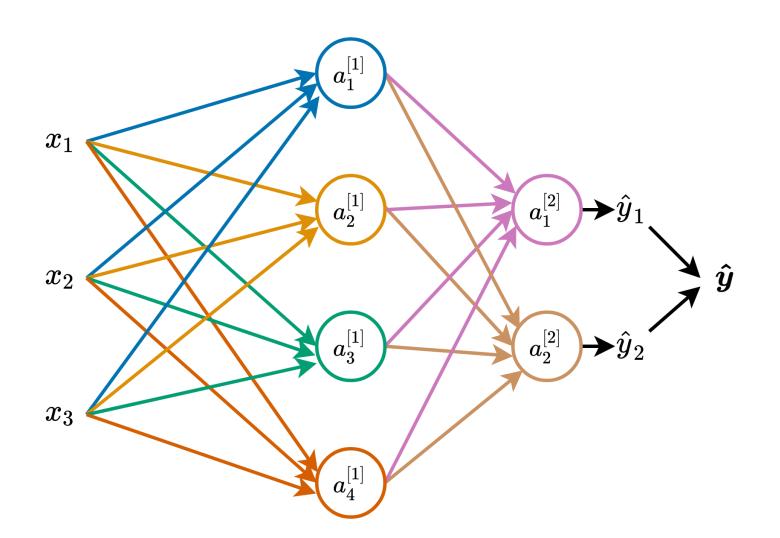
$$\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$$

Activation functions

NN - Activation Function Introduction

$$\hat{\mathbf{y}} = g^{[2]}(\mathbf{W}^{[2]T}g^{[1]}(\mathbf{W}^{[1]T}x + \mathbf{b}^{[1]}) + \mathbf{b}^{[2]})$$

Q: What happens if we remove the activations?



NN - Activation Function Introduction

$$\hat{\mathbf{y}} = g^{[2]}(\mathbf{W}^{[2]T}g^{[1]}(\mathbf{W}^{[1]T}x + \mathbf{b}^{[1]}) + \mathbf{b}^{[2]})$$

Q: What happens if we remove the activations?

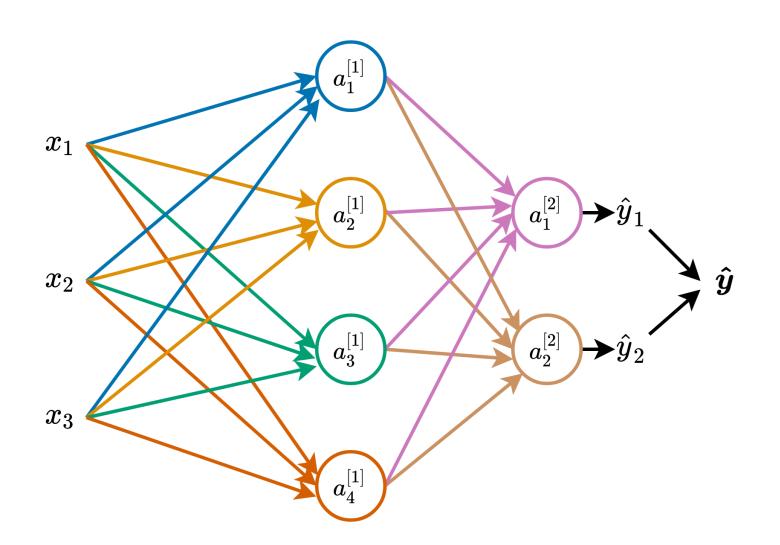
$$\hat{\mathbf{y}} = \mathbf{W}^{[2]T} (\mathbf{W}^{[1]T} x + \mathbf{b}^{[1]}) + \mathbf{b}^{[2]}$$

$$\hat{\mathbf{y}} = \mathbf{W}^{[2]T} \mathbf{W}^{[1]T} x + \mathbf{W}^{[2]T} \mathbf{b}^{[1]} + \mathbf{b}^{[2]}$$

Define
$$\mathbf{W}'^T = \mathbf{W}^{[2]T}\mathbf{W}^{[1]T}$$
 Define $\mathbf{b}' = \mathbf{W}^{[2]T}\mathbf{b}^{[1]} + \mathbf{b}^{[2]}$

$$\hat{\mathbf{y}} = \mathbf{W}'^T \mathbf{x} + \mathbf{b}'$$

A: We end up with a linear classifier!



NN - Activation functions Introduction

To model a nonlinear problem:

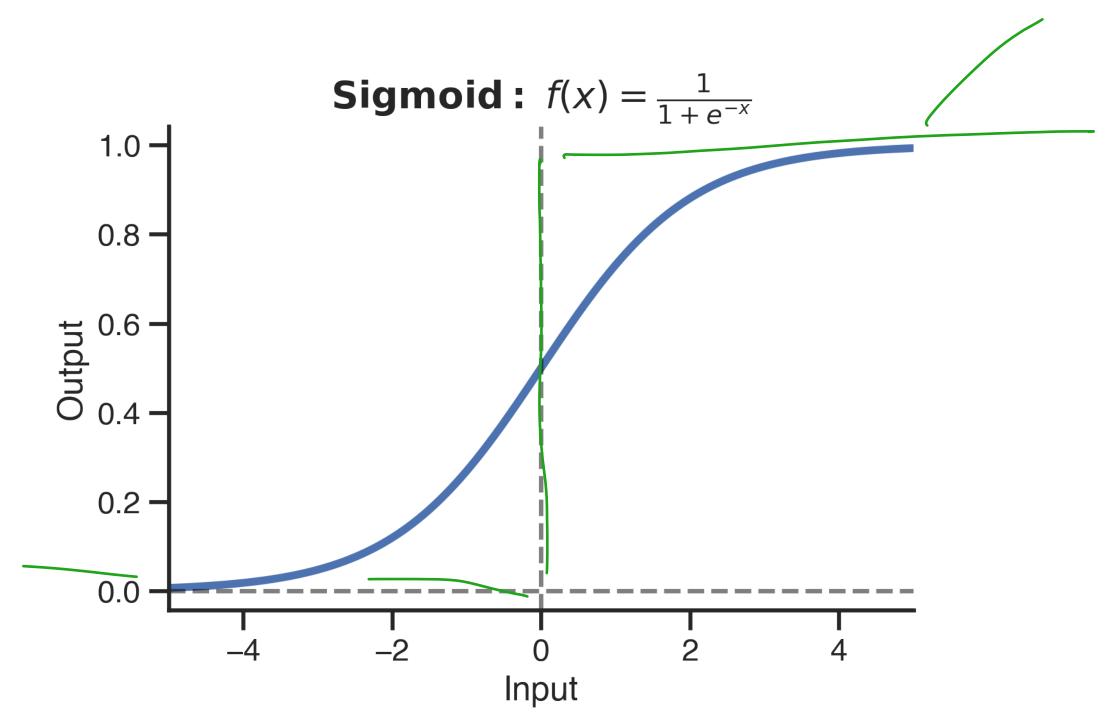
- Pass the output of each neuron through a nonlinear function,
 called activation function
- Connection to neuron firing in brain

Some well-known activation functions:

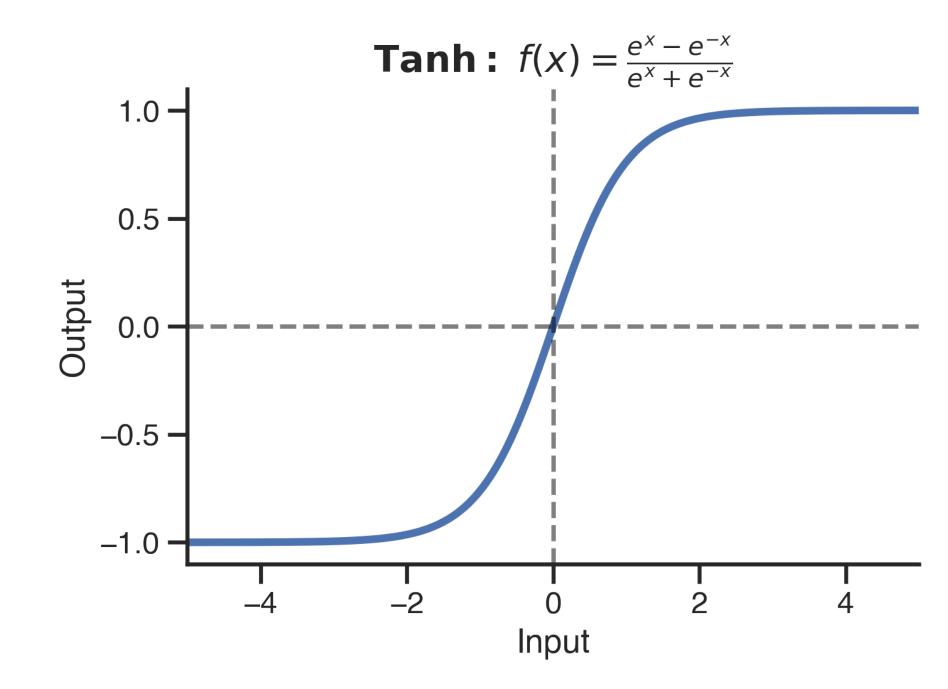
- Sigmoid
- Tanh
- ReLU

NN - Activation functions

Overview $5 (x) = 4h \cosh |x|$



- Squashes input in a [0, 1] range
- Approximately nullifies gradient (for "large" positive or negative inputs) -> vanishing gradient problem
- rarely used except for final layer of binary classification network

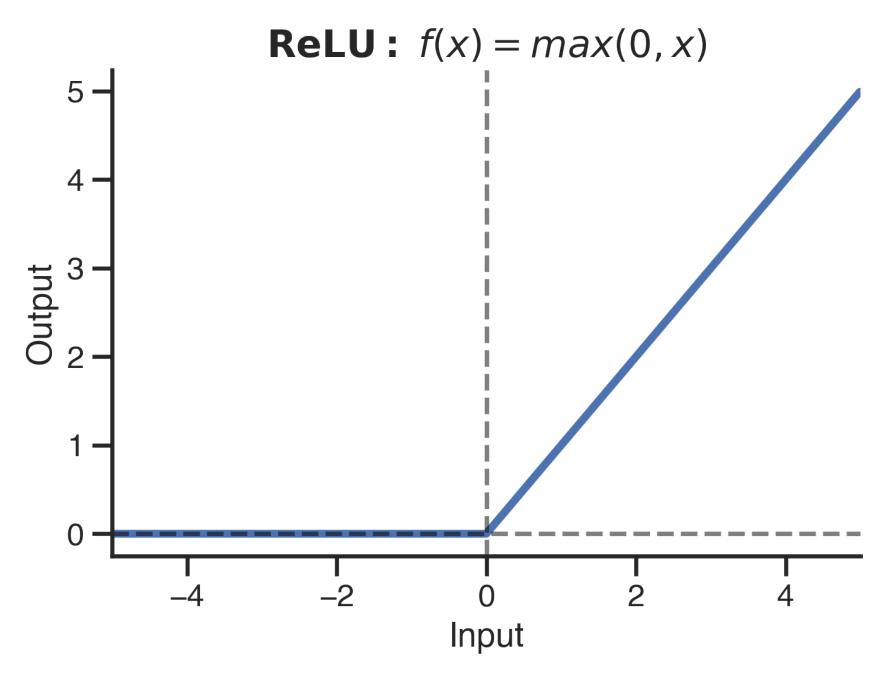


Tanh:

- Squashes input in a [-1, 1] range
- Like sigmoid, nullifies gradient (for "large" positive or negative inputs)
- Zero-centered, preferable over sigmoid as an activation
- Rarely used in practice (ReLU is more popular)

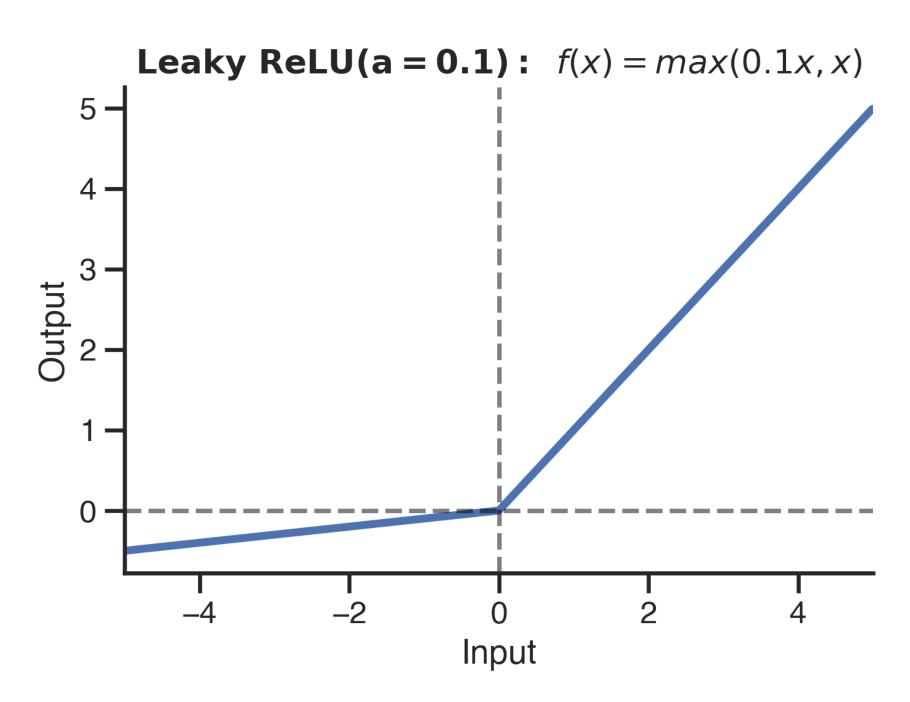
NN - Activation functions

Overview



Rectified Linear Unit (ReLU):

- Easily computed, simple gradient
- Greatly accelerates convergence of gradient descent
- Saturates in only one direction, suffers less from vanishing gradient problem
- commonly used in practice



Leaky ReLU:

- Attempts to fix "dying ReLU" problem by having a small negative slope for x < 0.
- Leaky ReLU and other ReLU variants (ELU, SELU, GELU, Swish, etc...) are sometimes used over ReLU

NN - Activation functions

Derivatives

Sigmoid:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

Tanh:

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\frac{d}{dx} \tanh(x) = 1 - \tanh^2(x)$$

Rectified Linear Unit (ReLU):

$$ReLU(x) = \begin{cases} x & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases} = \max(0, x)$$

$$\frac{d}{dx} \text{ReLU}(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Note: Derivative of ReLU is undefined for x = 0. By convention, it is set to 0.

Training neural nets

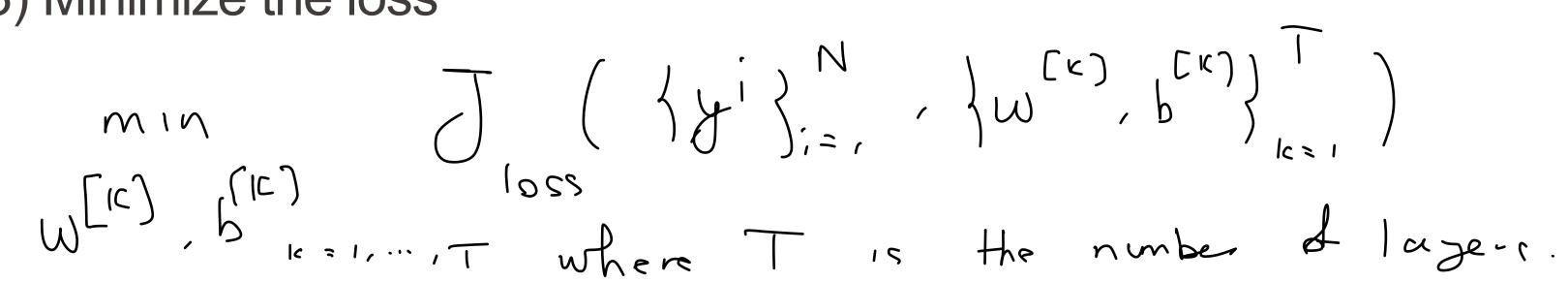
Determining the neural network predictor

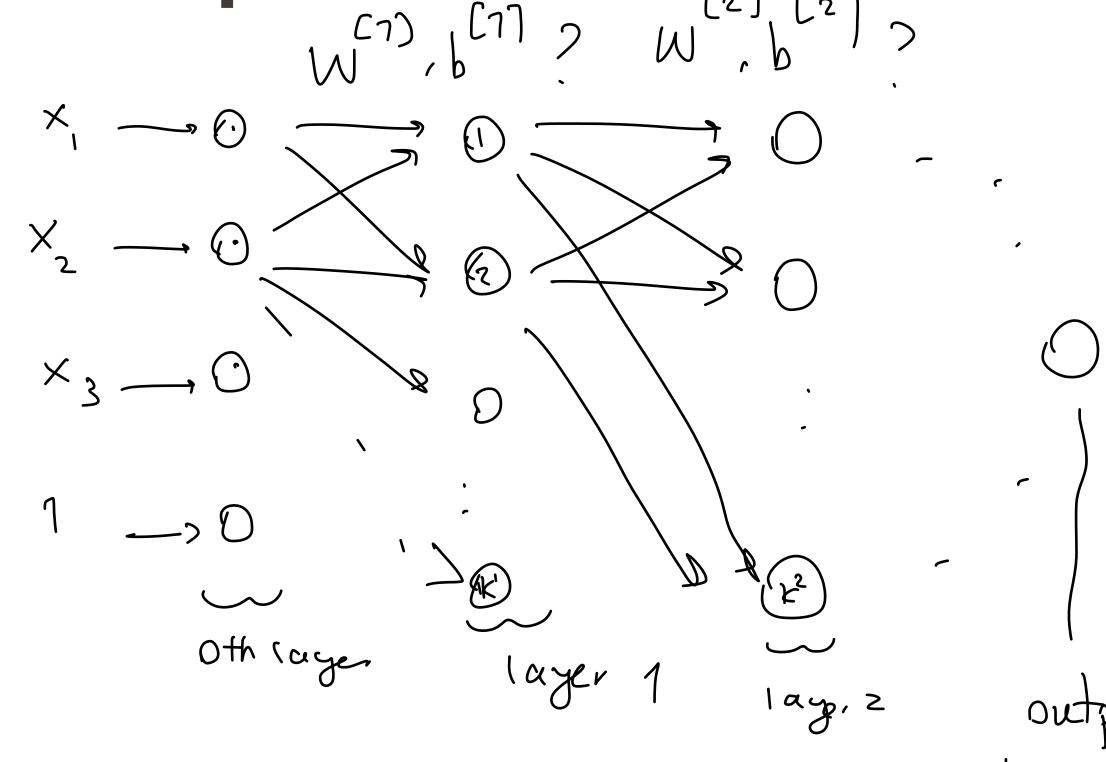
Training

1) Choose the neural network architecture

classification: cross-entropy loss

3) Minimize the loss





g: predicten boused

Neural networks Training

Forward pass of 2 layer NN (for a single example):

$$\mathbf{z}^{[1]} = \mathbf{W}^{[1]T}x + \mathbf{b}^{[1]}$$

$$\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$$

$$\mathbf{z}^{[2]} = \mathbf{W}^{[2]T}\mathbf{a}^{[1]} + \mathbf{b}^{[2]}$$

$$\hat{\mathbf{y}} = \mathbf{a}^{[2]} = g^{[2]}(\mathbf{z}^{[2]})$$

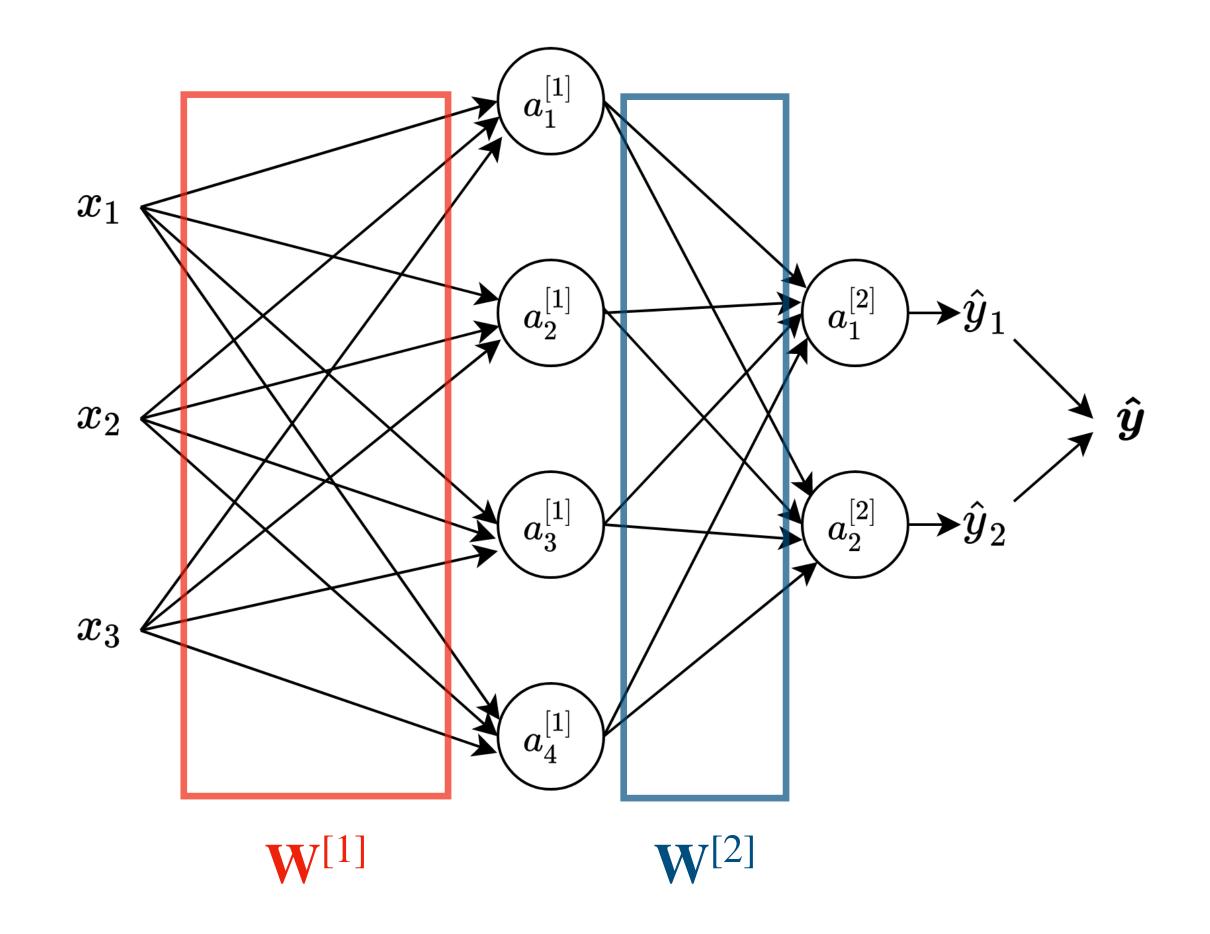
$$\hat{\mathbf{y}} = g^{[2]}(\mathbf{W}^{[2]T}g^{[1]}(\mathbf{W}^{[1]T}x + \mathbf{b}^{[1]}) + \mathbf{b}^{[2]})$$

depth 2 network...

you can see how to

generalize to depth T

network



Neural networks Training

Forward pass of 2 layer NN (for a single sample):

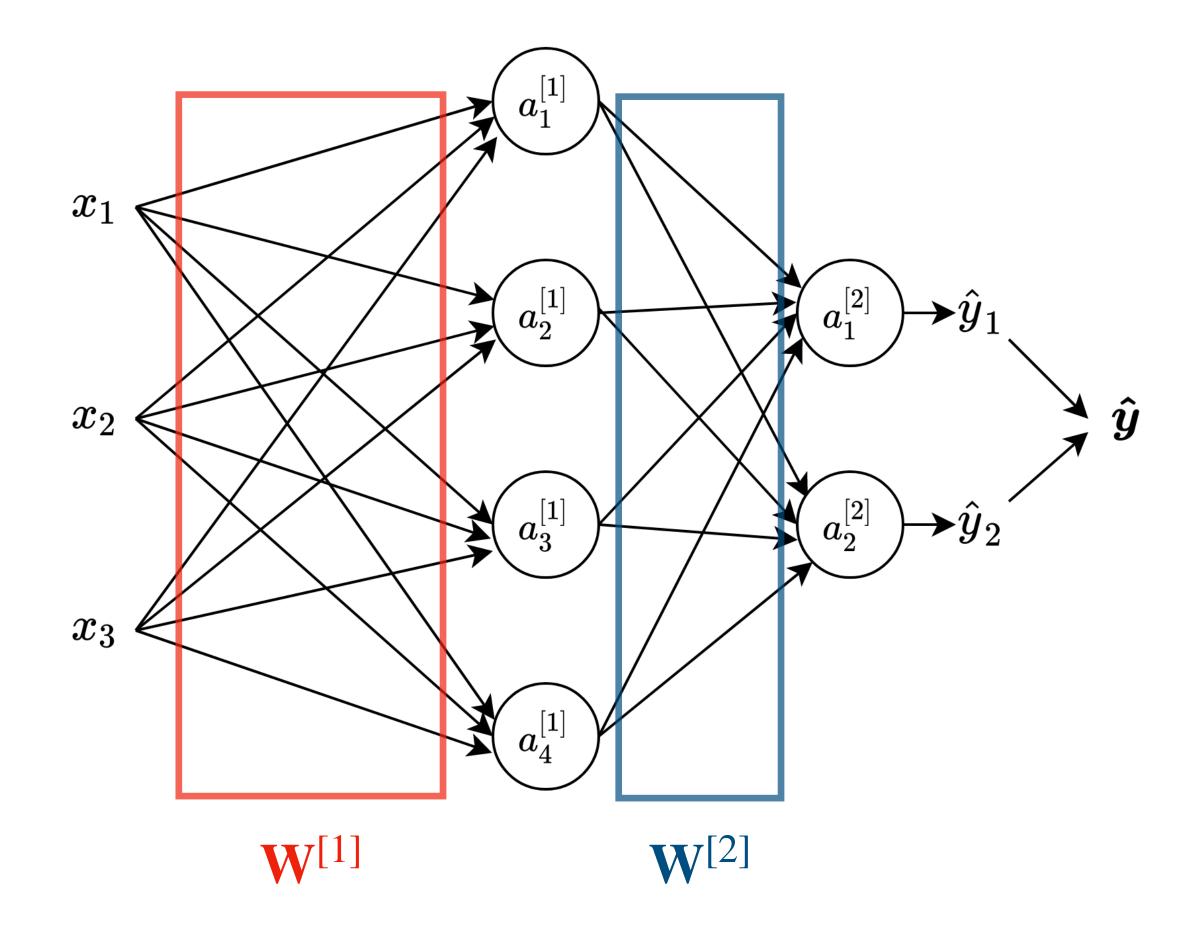
$$\hat{\mathbf{y}} = g^{[2]}(\mathbf{W}^{[2]T}g^{[1]}(\mathbf{W}^{[1]T}x + \mathbf{b}^{[1]}) + \mathbf{b}^{[2]})$$

To train, we need a loss function: $L(\hat{y}, y)$

Using that loss function, we want to update $\mathbf{W}^{[1]}$, $\mathbf{b}^{[1]}$, $\mathbf{W}^{[2]}$, $\mathbf{b}^{[2]}$

using gradient descent.

$$W^{(1)} \in \mathbb{R}^{3 \times 7}$$
, $W^{(2)} \in \mathbb{R}^{2}$
 $b^{(1)} \in \mathbb{R}^{7}$, $b^{(2)} \in \mathbb{R}^{2}$



Loss function

Regression
$$\left\{ \left(\times^{\prime}, \mathcal{J}^{\prime} \right) \right\}_{i=1}^{N}$$
, $\mathcal{J}^{i} \in \mathbb{R}$

meæn. square error (MSC)

$$L(W,b) = \frac{1}{N} \sum_{i=1}^{N} (j^i - y^i)^2 - j^i$$
 producten de neural net

- output layer has often no non. linearity.

Classification
$$\left\{ \begin{array}{ccc} (x', y', 1) \\ (x', y', 1) \\ \vdots \end{array} \right\}$$

- output layer has k neurons, followed by cross entropy loss.

Gradient descent

Need to compute:
$$\frac{\partial L}{\partial \mathbf{W}^{[i]}}, \frac{\partial L}{\partial \mathbf{b}^{[i]}}$$

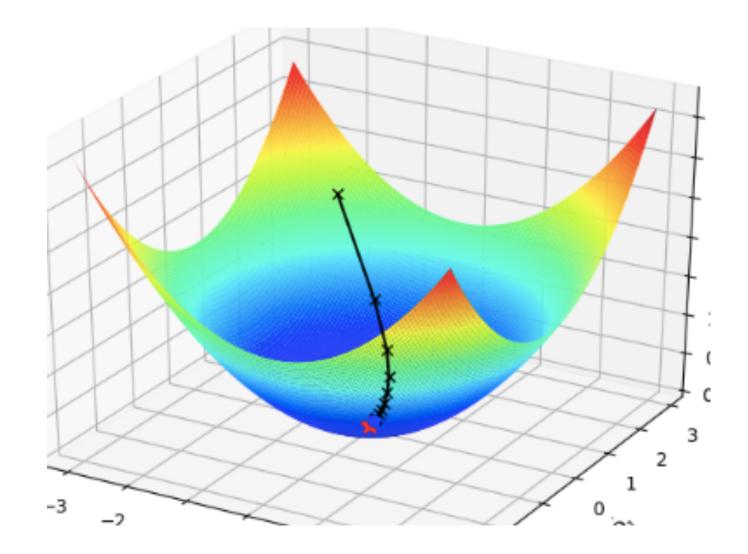
=> Gradient of loss with respect to weights and biases of each layer

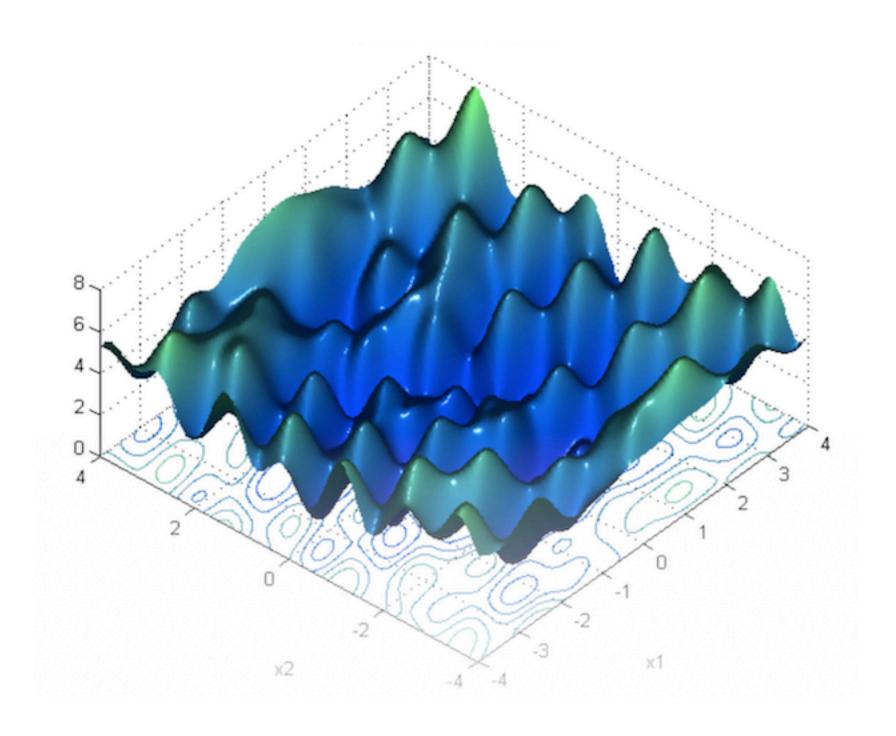
Once gradients are computed, update weights with:

$$\mathbf{W}_{t+1}^{[i]} := \mathbf{W}_{t}^{[i]} - \alpha_{t} \frac{\partial L}{\partial \mathbf{W}^{[i]}} (\mathbf{W}_{t}, \mathbf{b_{t}})$$

$$\mathbf{b}_{t+1}^{[i]} := \mathbf{b}_t^{[i]} - \alpha_t \frac{\partial L}{\partial \mathbf{b}^{[i]}} (\mathbf{W}_t, \mathbf{b_t})$$

where α_t is the learning rate





Neural networks Forward / Backward pass

Forward pass: Compute the output of a neural network for a given input

Backward pass: Compute derivatives of the network parameters given the output

During training, you need both the forward pass and the backward pass.

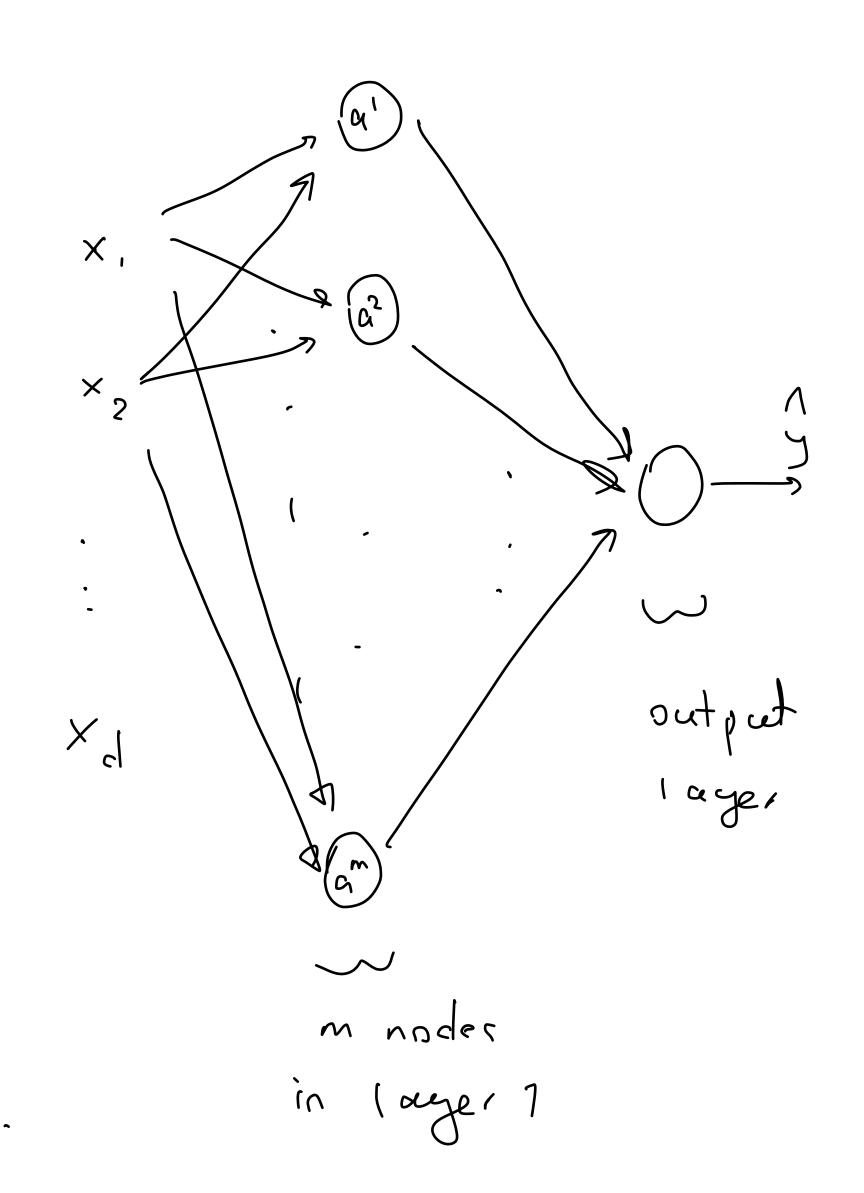
During prediction (inference), you only need the forward pass.

Inference: the process of using a trained machine learning model for prediction

EPFL

Computing gradients Back propagation

example on EIRd, yelR $[(y',\hat{y}') = (\hat{y}'-y')^2, (Recall L(W,b) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}'-y')^2)$ We need to compute DL(W,b) 7 L (w.b), D wj. [layer, 1, pbj. m are brases de layer 1 are weights of the output layer. bo EIR bran of sutput layer



Computing gradients

$$\hat{y} = g(b_0 + w_{0,1}a_1 + w_{0,2}a_2 + \dots + w_{0,m}a_m) = g(Z_0), g_0: \mathbb{R} \rightarrow \mathbb{R}$$

$$\alpha_{j} = g(b_{j} + w_{j,1} \times_{1} + w_{j,2} \times_{2} + \cdots + w_{j,d} \times_{d}) = g(z_{j}) , j = 1, \dots, m.$$

$$\frac{\partial(y-\hat{y})^2}{\partial w_{o},\kappa} = 2(y-\hat{y})\frac{\partial \hat{y}}{\partial w_{o},\kappa} = 2(y-\hat{y})\frac{dg_{o}}{dz_{o}}\frac{\partial z_{o}}{\partial w_{o},\kappa} = 2(y-\hat{y})\frac{dg_{o}}{dz_{o}}\alpha_{\kappa} = \chi_{o}\alpha_{\kappa}$$

$$\frac{\partial(y-\hat{y})^2}{\partial w_{j,l}} = 2(y-\hat{y})\frac{\partial \hat{y}}{\partial w_{j,l}} = 2(y-\hat{y})\frac{\partial g}{\partial z_0}\frac{\partial z_0}{\partial a_j}\frac{\partial a_j}{\partial w_{j,l}}$$

$$= \hat{\chi}_0 \quad w_{0,j}\frac{\partial g}{\partial z_0}\frac{\partial z_j}{\partial w_{j,l}} = \hat{\chi}_0 \quad \hat{\chi}_0 \quad$$

dzj owj.l