
Neural networks for 
classification and regression



Outline

▪ Hour 1 
• Review, examples of ML in IGM 

• Neural networks introduction 

▪ Hour 2: Neural network training
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Last week: k-NN in python

▪ Dataset: Biomechanic features of orthopaedic 
patients, and the type of injury

▪ Goal: Classify the condition of patients based 
on biomechanic features

▪ Dataset: Pinguin body features and their 
specie type

▪ Goal: Classify the specie of a new observed 
pinguin

Note: the only difference between two exercises are the datasets



Review problem

▪ Dataset: Biomechanic features of 200 orthopaedic patients, and the type of injury
• Pelvic tilt (degree), Spondylolisthesis SP (degree), label: normal (1), Hernia (2), Spondylosithesis (3) disk

▪ Goal: given a new patient measurement, classify the disk

▪ Approach 1: k-NN
After tuning the distance and k using cross-fold validation, you found 4-
NN with Manhattan distance to have an accuracy of 72% on your test set. 
Write the pseudo-code to classify the disk condition of this new patient

▪ Approach 2: Naive Bayes
Let’s first simplify the problem

▪ pelvic tilt: low/high,        SP: low/high
Write the pseudo-code to classify the disk condition for a 
patient who has low pelvic tilt and low SP

N = 200 dataset
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Example application of ML used in Génie mécanique
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Prof. Josie Hughes: Computational robot design and fabrication lab
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Nose Dive

Mid glide

Recovery 
Glide

Automated fabrication & optimization of paper planes
Optimization & Exploration

• Predict the flight behaviour 
of a paper plane (and its 
variance) given the design 
parameters

• Optimally sample from the 
design space to build up the 
model to minimize physical 
experimentation

• Optimize the design of light 
weight MAV robotic systems.
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Soft Tentacles
Simulation & Modelling for design optimization

varying frequency varying length/material

Thrust

• Predict the thrust generated by soft structures for different controllers and morphologies given a training data set
• Can be used to optimize the design of soft swimming robots
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Robots ‘food scientists’
Optimizing coffee foam

Metric for coffee bubbles Objective: minimize bubbles, maximize height

100+ coffees later…



9Introduction Logistic regression Linear regression 

KNN 

Clustering 

Neural networks 

Convolutional neural 
networks 

Naive Bayes

Decision-trees  Dimensionality reduction 

Reinforcement learning  AI ethics



Neural networks
▪ Why deep learning? 
▪ Neural networks 

• Architecture  
• Activation functions 
▪ Training 

• Back propogation 
• Stochastic gradient descent



Review of supervised learning
feature vectors, independent variables 

Labels, dependent variables, target, outcome 

Training data/set/example 

Sample, sample point 
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Why deep learning?
Logistic regression review

Logistic regression for -dimensional data: 
Input:      
Weights: 
Bias:  

Logistic:   
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Why deep learning?
Limitations of logistic regression

Issue: Logistic regression performs badly on non-
linearly separable data 

Potential fix: Use feature engineering to make data 
linearly separable, then use logistic regression 

However: 
▪ Features that linearly separate the data can be 

hard to find manually, specially in high dimension 



Why deep learning?
From logistic regression to neural networks

Neural networks have been successful in learning complex, non-linear functions



Why deep learning?
New way to approach ML

Data Features Model

Before deep learning:

Data Features Model

Deep neural networks derive  
useful features from the data!

Deep learning:

Hand-design the features



Neural networks



Neural networks
Representation

“Fully-connected” layers 
Each neuron of a layer is connected 
to all neurons of the following layer

“2-layer Neural Net”, or 
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or 
“2-hidden-layer Neural Net”

weights weights



Neural networks
Inside a neuron

  = Activation functiong



Connections to biological neurons

Source: towardsdatascience.com



Applications - nowadays everywhere! 

- ChatGPT / large language models

- midjourney .

- object recogniton (ex : classify obstacle/new- obstacle , dog , cat , ... )

- digit/hand-wring recognition
:

Engineering
control : dynamical system modelly

controller designn.



Neural networks
Representation

a[l]
i Node in layer

Layer x =
x1
x2
x3

Shape (3, 1)



Neural networks
Representation

Weight vector for first node of first layer: 

w[1]
1 =

w[1]
1,1

w[1]
1,2

w1]
1,3

x =
x1
x2
x3

w[1]
1

a[l]
i Node in layer

Layer



Neural networks
Representation

 

 

 

z[1]
1 = w[1]T

1 x + b[1]
1
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Neural networks
Representation

Shape (3, 1)

Weight vector for first node of first layer: 

w[1]
1 =

w[1]
1,1

w[1]
1,2

w1]
1,3
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Apply activation
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Neural networks
Representation

W[1] =
⋮ ⋮ ⋮ ⋮

w[1]
1 w[1]
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Activation functions



NN - Activation Function
Introduction

ŷ = g[2](W[2]Tg[1](W[1]T x + b[1]) + b[2])

Q: What happens if we remove the activations?



NN - Activation Function
Introduction

ŷ = g[2](W[2]Tg[1](W[1]T x + b[1]) + b[2])

Q: What happens if we remove the activations?

 ŷ = W[2]T(W[1]T x + b[1]) + b[2]

ŷ = W[2]TW[1]T x + W[2]Tb[1] + b[2]

Define W′ 
T = W[2]TW[1]T Define b′ = W[2]Tb[1] + b[2]

ŷ = W′ 

T x + b′ 

A: We end up with a linear classifier!



NN - Activation functions
Introduction

To model a nonlinear problem: 
▪ Pass the output of each neuron through a nonlinear function, 

called activation function 
▪ Connection to neuron firing in brain 

Some well-known activation functions: 
▪ Sigmoid 
▪ Tanh 
▪ ReLU



NN - Activation functions
Overview

Sigmoid ( ): 

▪ Squashes input in a [0, 1] range 

▪ Approximately nullifies gradient (for “large” positive or 
negative inputs) -> vanishing gradient problem 

▪ rarely used except for final layer of binary classification 
network

σ Tanh: 
▪ Squashes input in a [-1, 1] range 

▪ Like sigmoid, nullifies gradient (for “large” positive or 
negative inputs) 

▪ Zero-centered, preferable over sigmoid as an activation 

▪ Rarely used in practice (ReLU is more popular) 

1
x G
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threshold

I O

-
-

I
&



NN - Activation functions
Overview

Rectified Linear Unit (ReLU): 
▪ Easily computed, simple gradient 

▪ Greatly accelerates convergence of gradient descent 

▪ Saturates in only one direction, suffers less from 
vanishing gradient problem 

▪ commonly used in practice

Leaky ReLU: 
▪ Attempts to fix “dying ReLU” problem by having a 

small negative slope for x < 0. 

▪ Leaky ReLU and other ReLU variants (ELU, 
SELU, GELU, Swish, etc…) are sometimes used 
over ReLU



NN - Activation functions
Derivatives

Sigmoid:  

 

 

Tanh: 

 

σ(x) = 1
1 + e−x

d
dx

σ(x) = σ(x)(1 − σ(x))

tanh(x) = ex − e−x

ex + e−x

d
dx

tanh(x) = 1 − tanh2(x)

Rectified Linear Unit (ReLU): 

 

 

Note: Derivative of ReLU is undefined for 
. By convention, it is set to 0.

ReLU(x) = {x if x > 0
0 if x ≤ 0 = max(0, x)

d
dx

ReLU(x) = {1 if x > 0
0 if x < 0

x = 0



Training neural nets



Determining the neural network predictor

1) Choose the neural network architecture 

2) Choose a loss function 

3) Minimize the loss 

Training [T]27 ? We (27W
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Neural networks
Training

Forward pass of 2 layer NN (for a single example):  

 

 

 

 

z[1] = W[1]T x + b[1]

a[1] = g[1](z[1])
z[2] = W[2]Ta[1] + b[2]

ŷ = a[2] = g[2](z[2])
ŷ = g[2](W[2]Tg[1](W[1]T x + b[1]) + b[2])

W[1] W[2]

depth 2 network...

you can see how to

generalize ↳ depth T

network



Neural networks
Training

Forward pass of 2 layer NN (for a single sample):  

 

  

To train, we need a loss function:  

Using that loss function, we want to update 
  

using gradient descent.

ŷ = g[2](W[2]Tg[1](W[1]T x + b[1]) + b[2])

L(ŷ, y)

W[1], b[1], W[2], b[2]

W[1] W[2]

& x 2
3x9
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Loss function
Regression 

Classification 

& (xi , yi)Y , ye

mean. square error (MSE)
N

L(W
, b) = ↓ [(yi-gije , ye productor of neural net

i = 1

-> output layer has often no con linearly .

N

4 exiji yi f (1 , 2, ..., k)

- output layer hasK neurons ,
followed by cross- entropy loss.



Gradient descent

Need to compute: ,  

=> Gradient of loss with respect  
to weights and biases of each layer 

Once gradients are computed,  
update weights with: 

▪  

▪  

where  is the learning rate

∂L
∂W[i]

∂L
∂b[i]

W[i]
t+1 := W[i]

t − αt
∂L

∂W[i] (Wt, bt)

b[i]
t+1 := b[i]

t − αt
∂L

∂b[i] (Wt, bt)

αt



Neural networks
Forward / Backward pass

Forward pass: Compute the output of a neural network for a given input  
Backward pass: Compute derivatives of the network parameters given the output 

During training, you need both the forward pass and the backward pass. 

During prediction (inference), you only need the forward pass. 

Inference: the process of using a trained machine learning model for prediction



Computing gradients
Back propagation
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Computing gradients
Back propagation

Now
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